Advertisement

Molecular portraits of clear cell ovarian and endometrial carcinoma with comparison to clear cell renal cell carcinoma

Published:November 01, 2022DOI:https://doi.org/10.1016/j.ygyno.2022.10.020

      Highlights

      • Ovarian and endometrial clear cell carcinomas have similar molecular profiles.
      • Gynecologic clear cell carcinomas have distinct molecular profiles from renal types.
      • Gynecologic clear cell carcinomas have high mutations rates in the PI3K/mTOR pathway.
      • Ovarian clear cell carcinomas had a 19.1% tumor mutation burden.

      Abstract

      Objective

      Advanced clear cell gynecologic malignancies remain among the most challenging diseases to manage. We evaluated ovarian and endometrial clear cell carcinoma (OCCC and ECCC) specimens using comprehensive sequencing technology to identify mutational targets and compared their molecular profiles to histologically similar clear cell renal cell carcinoma (ccRCC).

      Methods

      Using next-generation sequencing (NGS), fragment analysis (FA), and in situ hybridization (ISH), 164 OCCC, 75 ECCC and 234 ccRCC specimens from 2015 to 2018 were evaluated and compared.

      Results

      The highest mutation rates in ECCC and OCCC were noted in: ARID1A (75.0%, 87.5%), TP53 (34.8%, 11.1%), PIK3CA (25.0%, 46.8%), PPP2R1A (8.7%, 16.7%), MSI-high (8.8%, 6.4%) and PTEN (8.3%, 7.1%). Among these mutations, there was no significant difference between OCCC and ECCC mutation prevalence except in TP53, with higher mutation rates in ECCC versus OCCC (34.8 vs. 11.1%, respectively, p < 0.05). ccRCC demonstrated different mutation profiles with higher mutation rates in VHL (80.3%), PBRM1 (43.9%), SETD2 (31.1%), and KDM5C (29.2%). By contrast, VHL, PBRM1, and SETD2 mutations were not found in ECCC and OCCC (0.0%). Compared to ccRCC and ECCC, OCCC was found to have a significantly higher tumor mutation burden (TMB) (19.1%).

      Conclusion

      Gynecologic and renal CCC demonstrate separate and disparate somatic profiles. However, OCCC and ECCC are diseases with similar profiles. TMB and MSI analyses indicate that a subset of OCCC may benefit from immunotherapy. Prospective clinical trials are needed and are underway to examine targeted therapies in these gynecologic disease subtypes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • del Carmen M.G.
        • Birrer M.
        • Schorge J.O.
        Clear cell carcinoma of the ovary: a review of the literature.
        Gynecol. Oncol. 2012; 126: 481-490
        • Orezzoli J.P.
        • Russell A.H.
        • Oliva E.
        • Del Carmen M.G.
        • Eichhorn J.
        • Fuller A.F.
        Prognostic implication of endometriosis in clear cell carcinoma of the ovary.
        Gynecol. Oncol. 2008; 110: 336-344
        • Chan J.K.
        • Teoh D.
        • Hu J.M.
        • Shin J.Y.
        • Osann K.
        • Kapp D.S.
        Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers.
        Gynecol. Oncol. 2008; 109: 370-376
        • Winter 3rd, W.E.
        • Maxwell G.L.
        • Tian C.
        • Carlson J.W.
        • Ozols R.F.
        • Rose P.G.
        • et al.
        Prognostic factors for stage III epithelial ovarian cancer: a gynecologic oncology group study.
        J. Clin. Oncol. 2007; 25: 3621-3627
        • Goff B.A.
        • Sainz de la Cuesta R.
        • Muntz H.G.
        • Fleischhacker D.
        • Ek M.
        • Rice L.W.
        • et al.
        Clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy in stage III disease.
        Gynecol. Oncol. 1996; 60: 412-417
        • Carcangiu M.L.
        • Chambers J.T.
        Early pathologic stage clear cell carcinoma and uterine papillary serous carcinoma of the endometrium: comparison of clinicopathologic features and survival.
        Int. J. Gynecol. Pathol. 1995; 14: 30-38
        • Friedlander M.L.
        • Russell K.
        • Millis S.
        • Gatalica Z.
        • Bender R.
        • Voss A.
        Molecular profiling of clear cell ovarian cancers: identifying potential treatment targets for clinical trials.
        Int. J. Gynecol. Cancer. 2016; 26: 648-654
        • Ji J.X.
        • Wang Y.K.
        • Cochrane D.R.
        • Huntsman D.G.
        Clear cell carcinomas of the ovary and kidney: clarity through genomics.
        J. Pathol. 2018; 244: 550-564
        • Maru Y.
        • Tanaka N.
        • Ohira M.
        • Itami M.
        • Hippo Y.
        • Nagase H.
        Identification of novel mutations in Japanese ovarian clear cell carcinoma patients using optimized targeted NGS for clinical diagnosis.
        Gynecol. Oncol. 2017; 144: 377-383
        • Vanderwalde A.
        • Spetzler D.
        • Xiao N.
        • Gatalica Z.
        • Marshall J.
        Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients.
        Cancer Med. 2018; 7: 746-756
        • Network N.C.C.
        Ovarian Cancer including fallopian tube cancer and primary peritoneal 2019.
        (Available from)
        • Network NCC
        Uterine Neoplasms 2019.
        (Available from)
        • Piva F.
        • Santoni M.
        • Matrana M.R.
        • Satti S.
        • Giulietti M.
        • Occhipinti G.
        • et al.
        BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies.
        Expert. Rev. Mol. Diagn. 2015; 15: 1201-1210
        • Cancer Genome Atlas Research N
        Integrated genomic analyses of ovarian carcinoma.
        Nature. 2011; 474: 609-615
        • Shibuya Y.
        • Tokunaga H.
        • Saito S.
        • Shimokawa K.
        • Katsuoka F.
        • Bin L.
        • et al.
        Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing.
        Genes Chromosom. Cancer. 2018; 57: 51-60
        • Murakami R.
        • Matsumura N.
        • Brown J.B.
        • Higasa K.
        • Tsutsumi T.
        • Kamada M.
        • et al.
        Exome sequencing landscape analysis in ovarian clear cell carcinoma shed light on key chromosomal regions and mutation gene networks.
        Am. J. Pathol. 2017; 187: 2246-2258
        • Kim S.I.
        • Lee J.W.
        • Lee M.
        • Kim H.S.
        • Chung H.H.
        • Kim J.W.
        • et al.
        Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing.
        Gynecol. Oncol. 2018; 148: 375-382
        • Oda K.
        • Hamanishi J.
        • Matsuo K.
        • Hasegawa K.
        Genomics to immunotherapy of ovarian clear cell carcinoma: unique opportunities for management.
        Gynecol. Oncol. 2018; 151: 381-389
        • Cowey C.L.
        • Rathmell W.K.
        VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy.
        Curr. Oncol. Rep. 2009; 11: 94-101
        • Lalani A.A.
        • McGregor B.A.
        • Albiges L.
        • Choueiri T.K.
        • Motzer R.
        • Powles T.
        • et al.
        Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: current paradigms, use of immunotherapy, and future directions.
        Eur. Urol. 2019; 75: 100-110
        • Motzer R.J.
        • Tannir N.M.
        • McDermott D.F.
        • Aren Frontera O.
        • Melichar B.
        • Choueiri T.K.
        • et al.
        Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma.
        N. Engl. J. Med. 2018; 378: 1277-1290
        • Aghajanian C.
        • Filiaci V.
        • Dizon D.S.
        • Carlson J.W.
        • Powell M.A.
        • Secord A.A.
        • et al.
        A phase II study of frontline paclitaxel/carboplatin/bevacizumab, paclitaxel/carboplatin/temsirolimus, or ixabepilone/carboplatin/bevacizumab in advanced/recurrent endometrial cancer.
        Gynecol. Oncol. 2018; 150: 274-281
        • Chan J.K.
        • Brady W.
        • Monk B.J.
        • Brown J.
        • Shahin M.S.
        • Rose P.G.
        • et al.
        A phase II evaluation of sunitinib in the treatment of persistent or recurrent clear cell ovarian carcinoma: an NRG oncology/gynecologic oncology group study (GOG-254).
        Gynecol. Oncol. 2018; 150: 247-252
        • Marcus L.
        • Lemery S.J.
        • Keegan P.
        • Pazdur R.
        FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors.
        Clin. Cancer Res. 2019; 25: 3753-3758
        • Cai K.Q.
        • Albarracin C.
        • Rosen D.
        • Zhong R.
        • Zheng W.
        • Luthra R.
        • et al.
        Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma.
        Hum. Pathol. 2004; 35: 552-559
        • Stelloo E.
        • Bosse T.
        • Nout R.A.
        • MacKay H.J.
        • Church D.N.
        • Nijman H.W.
        • et al.
        Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative.
        Mod. Pathol. 2015; 28: 836-844
        • Matulonis U.A.
        • Shapira-Frommer R.
        • Santin A.D.
        • Lisyanskaya A.S.
        • Pignata S.
        • Vergote I.
        • et al.
        Antitumor activity and safety of Pembrolizumab in patients with advanced recurrent ovarian Cancer: results from the phase 2 KEYNOTE-100 study.
        Ann. Oncol. 2019; 30: 1080-1087
        • Howitt B.E.
        • Strickland K.C.
        • Sholl L.M.
        • Rodig S.
        • Ritterhouse L.L.
        • Chowdhury D.
        • et al.
        Clear cell ovarian cancers with microsatellite instability: a unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression.
        Oncoimmunology. 2017; 6e1277308
        • Ott P.A.
        • Bang Y.J.
        • Berton-Rigaud D.
        • Elez E.
        • Pishvaian M.J.
        • Rugo H.S.
        • et al.
        Safety and antitumor activity of Pembrolizumab in advanced programmed death ligand 1-positive endometrial Cancer: results from the KEYNOTE-028 study.
        J. Clin. Oncol. 2017; 35: 2535-2541
        • Varga A.
        • Piha-Paul S.
        • Ott P.A.
        • Mehnert J.M.
        • Berton-Rigaud D.
        • Morosky A.
        • et al.
        Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of KEYNOTE-028.
        Gynecol. Oncol. 2019; 152: 243-250
        • Hamanishi J.
        • Mandai M.
        • Ikeda T.
        • Minami M.
        • Kawaguchi A.
        • Murayama T.
        • et al.
        Safety and antitumor activity of anti-PD-1 antibody, Nivolumab, in patients with platinum-resistant ovarian Cancer.
        J. Clin. Oncol. 2015; 33: 4015-4022
        • Wang M.
        • Fan W.
        • Ye M.
        • Tian C.
        • Zhao L.
        • Wang J.
        • et al.
        Molecular profiles and tumor mutational burden analysis in Chinese patients with gynecologic cancers.
        Sci. Rep. 2018; 8: 8990
        • Bi F.
        • Chen Y.
        • Yang Q.
        Significance of tumor mutation burden combined with immune infiltrates in the progression and prognosis of ovarian cancer.
        Cancer Cell Int. 2020; 20
        • Rodriguez-Freixinos V.
        • Lheureux S.
        • Mandilaras V.
        • Clarke B.
        • Dhani N.C.
        • Mackay H.
        • et al.
        Impact of somatic molecular profiling on clinical trial outcomes in rare epithelial gynecologic cancer patients.
        Gynecol. Oncol. 2019; 153: 304-311
        • Palisoul M.L.
        • Mullen M.M.
        • Feldman R.
        • Thaker P.H.
        Identification of molecular targets in vulvar cancers.
        Gynecol. Oncol. 2017; 146: 305-313
        • Jones N.L.
        • Xiu J.
        • Reddy S.K.
        • Burke W.M.
        • Tergas A.I.
        • Wright J.D.
        • et al.
        Identification of potential therapeutic targets by molecular profiling of 628 cases of uterine serous carcinoma.
        Gynecol. Oncol. 2015; 138: 620-626
        • Somasegar S.
        • Hoppenot C.
        • Vogel Jenkins
        • et al.
        Outcomes after targeted treatment based on somatic tumor genetic testing for women with gynecologic cancer.
        Gynecol. Oncol. 2021; 163: 220-228
        • Sicklick J.K.
        • Kato S.
        • Okumara R.
        • et al.
        Molecular profiling of malignancies guides first-line N-of-1 treatments in the I-PREDICT treatment-naïve study.
        Genome Med. 2021; 13: 155
        • Kato S.
        • Kim K.H.
        • Lim H.J.
        • et al.
        Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-one strategy.
        Nat. Commun. 2020; 11: 4965