Advertisement
Review Article| Volume 162, ISSUE 2, P496-505, August 2021

Download started.

Ok

Risk of pneumonitis in cancer patients treated with PARP inhibitors: A meta-analysis of randomized controlled trials and a pharmacovigilance study of the FAERS database

  • Author Footnotes
    1 Ximu Sun and Zhuo Ma contributed equally to this work.
    Zhuo Ma
    Footnotes
    1 Ximu Sun and Zhuo Ma contributed equally to this work.
    Affiliations
    Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China
    Search for articles by this author
  • Author Footnotes
    1 Ximu Sun and Zhuo Ma contributed equally to this work.
    Ximu Sun
    Footnotes
    1 Ximu Sun and Zhuo Ma contributed equally to this work.
    Affiliations
    Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.17, Qi He Lou Street, Dongcheng District, Beijing, China
    Search for articles by this author
  • Zhixia Zhao
    Affiliations
    Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China
    Search for articles by this author
  • Wenchao Lu
    Affiliations
    Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China
    Search for articles by this author
  • Qixiang Guo
    Affiliations
    Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China
    Search for articles by this author
  • Shihao Wang
    Affiliations
    AI Research Division, A.I. Phoenix Technology Co., Ltd, RM1080, LV 10, CENTRAL BLD, 1-3 PEDDER ST, CENTRAL, Hong Kong, China
    Search for articles by this author
  • Jiwen You
    Affiliations
    AI Research Division, A.I. Phoenix Technology Co., Ltd, RM1080, LV 10, CENTRAL BLD, 1-3 PEDDER ST, CENTRAL, Hong Kong, China
    Search for articles by this author
  • Yuhui Zhang
    Correspondence
    Corresponding authors.
    Affiliations
    Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China
    Search for articles by this author
  • Lihong Liu
    Correspondence
    Corresponding authors.
    Affiliations
    Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China
    Search for articles by this author
  • Author Footnotes
    1 Ximu Sun and Zhuo Ma contributed equally to this work.

      Highlights

      • PARP inhibitors significantly increased the risk of pneumonitis across 16 RCTs with a high proportion of severe cases.
      • In addition to olaparib having the most significant pneumonitis signal, a pneumonitis signal was also detected for niraparib.
      • Most of the PARP inhibitor-related pneumonitis occurred early during treatment course.
      • PARP inhibitor-related pneumonitis can result in serious outcomes with a fatality rate of 16%.

      Abstract

      Objective/Background

      We aimed to evaluate the risk of PARP inhibitors (PARPis) causing pneumonitis in randomized controlled trials (RCTs) and in the real-world practice.

      Methods

      First, a systematic review based on meta-analysis was conducted. RCTs with available data reporting pneumonitis events for PARPis were eligible for analysis. Second, we conducted a disproportionality analysis based on data from the FDA Adverse Event Reporting System (FAERS) database to characterize the main features of PARPi-related pneumonitis.

      Results

      16 trials with 5771 patients were included in our meta-analysis. Compared with control arms, PARPis showed a significant increase in the risk of pneumonitis events (Peto OR 2.68 [95% CI 1.31–5.47], p = 0.007) with no heterogeneity (I2 = 0%, χ2 p = 0.70). The incidence of pneumonitis across treatment arms was 0.79% (28/3551). In the FAERS database, we identified 84 cases of PARPi-pneumonitis with a fatality rate of 16% (13/79). The median time to event onset was 81 (interquartile range [IQR] 27–131) days and 87% of the adverse events occurred within 6 months.

      Conclusion

      PARPis increased the risk of pneumonitis that can result in serious outcomes and tend to occur early. Early recognition and management of PARPi-pneumonitis is of vital importance in clinical practice. The mechanisms and risk factors should be studied further to improve clinical understanding and innovative treatment strategies for these diseases.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mateo J.
        • Lord C.J.
        • Serra V.
        • Tutt A.
        • Balmaña J.
        • Castroviejo-Bermejo M.
        • et al.
        A decade of clinical development of PARP inhibitors in perspective.
        Ann. Oncol. 2019; 30: 1437-1447https://doi.org/10.1093/annonc/mdz192
        • Ruscito I.
        • Bellati F.
        • Ray-Coquard I.
        • Mirza M.R.
        • du Bois A.
        • Gasparri M.L.
        • et al.
        Incorporating PARP-inhibitors in primary and recurrent ovarian cancer: a meta analysis of 12 phase II/III randomized controlled trials.
        Cancer Treat. Rev. 2020; 87: 102040https://doi.org/10.1016/j.ctrv.2020.102040
      1. (Last accessed 2021.1.20)
        • LaFargue C.J.
        • Dal Molin G.Z.
        • Sood A.K.
        • Coleman R.L.
        Exploring and comparing adverse events between PARP inhibitors.
        Lancet Oncol. 2019; 20: e15-e28https://doi.org/10.1016/S1470-2045(18)30786-1
        • Ruiz-Schutz V.C.
        • Gomes L.M.
        • Mariano R.C.
        • de Almeida D.V.P.
        • Pimenta J.M.
        • Dal Molin G.Z.
        • et al.
        Risk of fatigue and anemia in patients with advanced cancer treated with olaparib: a meta-analysis of randomized controlled trials.
        Crit. Rev. Oncol. Hematol. 2019 Sep; 141: 163-173https://doi.org/10.1016/j.critrevonc.2019.06.012
        • Liu Y.
        • Meng J.
        • Wang G.
        Risk of selected gastrointestinal toxicities associated with poly (ADP-ribose) polymerase (PARP) inhibitors in the treatment of ovarian cancer: a meta-analysis of published trials.
        Drug Des Devel Ther. 2018 Sep 17; 12: 3013-3019https://doi.org/10.2147/DDDT.S164553
        • Zhou J.X.
        • Feng L.J.
        • Zhang X.
        Risk of severe hematologic toxicities in cancer patients treated with PARP inhibitors: a meta-analysis of randomized controlled trials.
        Drug Des Devel Ther. 2017 Oct 13; 11: 3009-3017https://doi.org/10.2147/DDDT.S147726
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • PRISMA Group
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        BMJ. 2009 Jul 21; 339: b2535https://doi.org/10.1136/bmj.b2535
        • Higgins J.P.
        • Altman D.G.
        • Gøtzsche P.C.
        • Jüni P.
        • Moher D.
        • Oxman A.D.
        • et al.
        The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.
        BMJ. 2011 Oct 18; 343: d5928https://doi.org/10.1136/bmj.d5928
        • Becker J.E.
        • Ross J.S.
        Reporting discrepancies between the clinicaltrials.gov results database and peer-reviewed publications.
        Ann. Intern. Med. 2014; 161: 760https://doi.org/10.7326/L14-5022
      2. (Last accessed 2021.1.7)
        • Brockhaus A.C.
        • Bender R.
        • Skipka G.
        The Peto odds ratio viewed as a new effect measure.
        Stat. Med. 2014 Dec 10; 33: 4861-4874https://doi.org/10.1002/sim.6301
        • Rothman K.J.
        • Lanes S.
        • Sacks S.T.
        The reporting odds ratio and its advantages over the proportional reporting ratio.
        Pharmacoepidemiol. Drug Saf. 2004 Aug; 13: 519-523https://doi.org/10.1002/pds.1001
        • Bate A.
        • Lindquist M.
        • Edwards I.R.
        • Olsson S.
        • Orre R.
        • Lansner A.
        • et al.
        A Bayesian neural network method for adverse drug reaction signal generation.
        Eur. J. Clin. Pharmacol. 1998 Jun; 54: 315-321https://doi.org/10.1007/s002280050466
      3. (Last accessed 2020.12.10)
      4. (Last accessed 2020.12.10)
      5. (Last accessed 2020.12.10)
      6. (Last accessed 2020.12.10)
      7. (Last accessed 2020.12.10)
      8. (Last accessed 2020.12.10)
      9. (Last accessed 2020.12.10)
      10. (Last accessed 2020.12.10)
        • de Bono J.
        • Mateo J.
        • Fizazi K.
        • Saad F.
        • Shore N.
        • Sandhu S.
        • et al.
        Olaparib for metastatic castration-resistant prostate Cancer.
        N. Engl. J. Med. 2020 May 28; 382: 2091-2102https://doi.org/10.1056/NEJMoa1911440
        • Ray-Coquard I.
        • Pautier P.
        • Pignata S.
        • Pérol D.
        • González-Martín A.
        • Berger R.
        • et al.
        Olaparib plus bevacizumab as first-line maintenance in ovarian Cancer.
        N. Engl. J. Med. 2019 Dec 19; 381: 2416-2428https://doi.org/10.1056/NEJMoa1911361
        • Golan T.
        • Hammel P.
        • Reni M.
        • Van Cutsem E.
        • Macarulla T.
        • Hall M.J.
        • et al.
        Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer.
        N. Engl. J. Med. 2019 Jul 25; 381: 317-327https://doi.org/10.1056/NEJMoa1903387
        • Robson M.E.
        • Tung N.
        • Conte P.
        • Im S.A.
        • Senkus E.
        • Xu B.
        • et al.
        OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer.
        Ann. Oncol. 2019 Apr 1; 30: 558-566https://doi.org/10.1093/annonc/mdz012
        • Moore K.
        • Colombo N.
        • Scambia G.
        • Kim B.G.
        • Oaknin A.
        • Friedlander M.
        • et al.
        Maintenance Olaparib in patients with newly diagnosed advanced ovarian Cancer.
        N. Engl. J. Med. 2018 Dec 27; 379: 2495-2505https://doi.org/10.1056/NEJMoa1810858
      11. (Last accessed 2020.12.16)
        • Ledermann J.A.
        • Oza A.M.
        • Lorusso D.
        • Aghajanian C.
        • Oaknin A.
        • Dean A.
        • et al.
        Rucaparib for patients with platinum-sensitive, recurrent ovarian carcinoma (ARIEL3): post-progression outcomes and updated safety results from a randomised, placebo-controlled, phase 3 trial.
        Lancet Oncol. 2020 May; 21: 710-722https://doi.org/10.1016/S1470-2045(20)30061-9
        • Garcia-Campelo R.
        • Arrieta O.
        • Massuti B.
        • Rodriguez-Abreu D.
        • Granados A.L.O.
        • Majem M.
        • et al.
        Combination of gefitinib and olaparib versus gefitinib alone in EGFR mutant non-small-cell lung cancer (NSCLC): A multicenter, randomized phase II study (GOAL).
        Lung Cancer. 2020; 150: 62-69https://doi.org/10.1016/j.lungcan.2020.09.018
        • Hao J.
        • Liu Y.
        • Zhang T.
        • He J.
        • Zhao H.
        • An R.
        • et al.
        Efficacy and safety of PARP inhibitors in the treatment of advanced ovarian cancer: An updated systematic review and meta-analysis of randomized controlled trials.
        Crit. Rev. Oncol. Hematol. 2021 Jan; 157: 103145https://doi.org/10.1016/j.critrevonc.2020.103145
        • Tomao F.
        • Bardhi E.
        • Di Pinto A.
        • Sassu C.M.
        • Biagioli E.
        • Petrella M.C.
        • et al.
        Parp inhibitors as maintenance treatment in platinum sensitive recurrent ovarian cancer: An updated meta-analysis of randomized clinical trials according to BRCA mutational status.
        Cancer Treat. Rev. 2019 Nov; 80: 101909https://doi.org/10.1016/j.ctrv.2019.101909
        • Kaufman B.
        • Shapira-Frommer R.
        • Schmutzler R.K.
        • Audeh M.W.
        • Friedlander M.
        • Balmaña J.
        • et al.
        Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation..
        J. Clin. Oncol. 2015 Jan 20; 33: 244-250https://doi.org/10.1200/JCO.2014.56.2728
        • Bang Y.J.
        • Xu R.H.
        • Chin K.
        • Lee K.W.
        • Park S.H.
        • Rha S.Y.
        • et al.
        Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial.
        Lancet Oncol. 2017 Dec; 18: 1637-1651https://doi.org/10.1016/S1470-2045(17)30682-4
        • Ratta R.
        • Guida A.
        • Scotté F.
        • Neuzillet Y.
        • Teillet A.B.
        • Lebret T.
        • et al.
        PARP inhibitors as a new therapeutic option in metastatic prostate cancer: a systematic review.
        Prostate Cancer Prostatic Dis. 2020 Dec; 23: 549-560https://doi.org/10.1038/s41391-020-0233-3
        • Gonçalves A.
        • Bertucci A.
        • Bertucci F.
        PARP inhibitors in the treatment of early breast Cancer: the step beyond?.
        Cancers (Basel). 2020 May 27; 12: 1378https://doi.org/10.3390/cancers12061378
        • Owonikoko T.K.
        • Dahlberg S.E.
        • Sica G.L.
        • Wagner L.I.
        • Wade 3rd, J.L.
        • Srkalovic G.
        • et al.
        Randomized phase II trial of cisplatin and etoposide in combination with Veliparib or placebo for extensive-stage small-cell lung Cancer: ECOG-ACRIN 2511 study.
        J. Clin. Oncol. 2019 Jan 20; 37: 222-229https://doi.org/10.1200/JCO.18.00264
        • Ramalingam S.S.
        • Blais N.
        • Mazieres J.
        • Reck M.
        • Jones C.M.
        • Juhasz E.
        • et al.
        Randomized, placebo-controlled, phase II study of Veliparib in combination with carboplatin and paclitaxel for advanced/metastatic non-small cell lung Cancer.
        Clin. Cancer Res. 2017 Apr 15; 23: 1937-1944https://doi.org/10.1158/1078-0432.CCR-15-3069
        • Gu L.
        • Du N.
        • Jin Q.
        • Li S.
        • Xie L.
        • Mo J.
        • et al.
        Magnitude of benefit of the addition of poly ADP-ribose polymerase (PARP) inhibitors to therapy for malignant tumor: a meta-analysis.
        Crit. Rev. Oncol. Hematol. 2020 Mar; 147: 102888https://doi.org/10.1016/j.critrevonc.2020.102888
        • Del Conte G.
        • Sessa C.
        • von Moos R.
        • Viganò L.
        • Digena T.
        • Locatelli A.
        • et al.
        Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours.
        Br. J. Cancer. 2014 Aug 12; 111: 651-659https://doi.org/10.1038/bjc.2014.345
        • Sandhu S.K.
        • Schelman W.R.
        • Wilding G.
        • Moreno V.
        • Baird R.D.
        • Miranda S.
        • et al.
        The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial.
        Lancet Oncol. 2013 Aug; 14: 882-892https://doi.org/10.1016/S1470-2045(13)70240-7
        • Khouri C.
        • Lepelley M.
        • Roustit M.
        • Montastruc F.
        • Humbert M.
        • Cracowski J.L.
        Comparative safety of drugs targeting the nitric oxide pathway in pulmonary hypertension: a mixed approach combining a Meta-analysis of clinical trials and a disproportionality analysis from the World Health Organization pharmacovigilance database.
        Chest. 2018 Jul; 154: 136-147https://doi.org/10.1016/j.chest.2017.12.008
        • Dolladille C.
        • Font J.
        • Bejan-Angoulvant T.
        • Zaman K.
        • Sassier M.
        • Ezine E.
        • et al.
        Cardiovascular safety of rapidly accelerated fibrosarcoma B-type and/or mitogen-activated extracellular signal-regulated kinase inhibitors: a mixed approach combining a meta-analysis and a pharmacovigilance disproportionality analysis.
        Arch. Cardiovasc. Dis. 2020 Jun-Jul; 113: 420-432https://doi.org/10.1016/j.acvd.2020.03.014
        • Morice P.M.
        • Leary A.
        • Dolladille C.
        • Chrétien B.
        • Poulain L.
        • González-Martín A.
        • et al.
        Myelodysplastic syndrome and acute myeloid leukaemia in patients treated with PARP inhibitors: a safety meta-analysis of randomised controlled trials and a retrospective study of the WHO pharmacovigilance database.
        Lancet Haematol. 2021 Feb; 8: e122-e134https://doi.org/10.1016/S2352-3026(20)30360-4
        • Rajan A.
        • Carter C.A.
        • Kelly R.J.
        • Gutierrez M.
        • Kummar S.
        • Szabo E.
        • et al.
        A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors.
        Clin. Cancer Res. 2012 Apr 15; 18: 2344-2351https://doi.org/10.1158/1078-0432.CCR-11-2425
        • Lord C.J.
        • Ashworth A.
        PARP inhibitors: synthetic lethality in the clinic.
        Science. 2017 Mar 17; 355: 1152-1158https://doi.org/10.1126/science.aam7344
        • Bai P.
        Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance.
        Mol. Cell. 2015 Jun 18; 58: 947-958https://doi.org/10.1016/j.molcel.2015.01.034
        • Szántó M.
        • Brunyánszki A.
        • Kiss B.
        • Nagy L.
        • Gergely P.
        • Virág L.
        • et al.
        Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein.
        Cell. Mol. Life Sci. 2012 Dec; 69: 4079-4092https://doi.org/10.1007/s00018-012-1003-8
        • Virág L.
        • Szabó C.
        The therapeutic potential of poly(ADP-ribose) polymerase inhibitors.
        Pharmacol. Rev. 2002 Sep; 54: 375-429https://doi.org/10.1124/pr.54.3.375
        • Lucarini L.
        • Pini A.
        • Gerace E.
        • Pellicciari R.
        • Masini E.
        • Moroni F.
        Poly(ADP-ribose) polymerase inhibition with HYDAMTIQ reduces allergen-induced asthma-like reaction, bronchial hyper-reactivity and airway remodelling.
        J. Cell. Mol. Med. 2014 Mar; 18: 468-479https://doi.org/10.1111/jcmm.12197
        • Curtin N.
        • Bányai K.
        • Thaventhiran J.
        • Le Quesne J.
        • Helyes Z.
        • Bai P.
        Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome?.
        Br. J. Pharmacol. 2020 Aug; 177: 3635-3645https://doi.org/10.1111/bph.15137
        • Murakami K.
        • Enkhbaatar P.
        • Shimoda K.
        • Cox R.A.
        • Burke A.S.
        • Hawkins H.K.
        • et al.
        Inhibition of poly (ADP-ribose) polymerase attenuates acute lung injury in an ovine model of sepsis.
        Shock. 2004 Feb; 21: 126-133https://doi.org/10.1097/01.shk.0000108397.56565.4a
        • Sethi G.S.
        • Sharma S.
        • Naura A.S.
        PARP inhibition by olaparib alleviates chronic asthma-associated remodeling features via modulating inflammasome signaling in mice.
        IUBMB Life. 2019 Jul; 71: 1003-1013https://doi.org/10.1002/iub.2048
        • Ahmad S.F.
        • Zoheir K.M.
        • Ansari M.A.
        • Korashy H.M.
        • Bakheet S.A.
        • et al.
        The role of poly(ADP-ribose) polymerase-1 inhibitor in carrageenan-induced lung inflammation in mice.
        Mol. Immunol. 2015 Feb; 63: 394-405https://doi.org/10.1016/j.molimm.2014.09.009
        • Naura A.S.
        • Hans C.P.
        • Zerfaoui M.
        • You D.
        • Cormier S.A.
        • Oumouna M.
        • et al.
        Post-allergen challenge inhibition of poly(ADP-ribose) polymerase harbors therapeutic potential for treatment of allergic airway inflammation.
        Clin. Exp. Allergy. 2008 May; 38: 839-846https://doi.org/10.1111/j.1365-2222.2008.02943.x
        • Dharwal V.
        • Naura A.S.
        PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice.
        Biochem. Pharmacol. 2018 Apr; 150: 24-34https://doi.org/10.1016/j.bcp.2018.01.027
        • Pagano A.
        • Métrailler-Ruchonnet I.
        • Aurrand-Lions M.
        • Lucattelli M.
        • Donati Y.
        • Argiroffo C.B.
        Poly(ADP-ribose) polymerase-1 (PARP-1) controls lung cell proliferation and repair after hyperoxia-induced lung damage.
        Am. J. Phys. Lung Cell. Mol. Phys. 2007 Sep; 293: L619-L629https://doi.org/10.1152/ajplung.00037.2007
        • Su Q.
        • Zhu E.C.
        • Wu J.B.
        • Li T.
        • Hou Y.L.
        • Wang D.Y.
        • et al.
        Risk of pneumonitis and pneumonia associated with immune checkpoint inhibitors for solid tumors: a systematic review and Meta-analysis.
        Front. Immunol. 2019 Feb 4; 10: 108https://doi.org/10.3389/fimmu.2019.00108