Advertisement

Image-guided tumor ablation in gynecologic oncology: Review of interventional oncology techniques and case examples highlighting a collaborative, multidisciplinary program

Published:December 30, 2020DOI:https://doi.org/10.1016/j.ygyno.2020.12.037

      Highlights

      • A variety of gynecologic tumor types and locations are amenable to image-guided ablation.
      • Ablation is performed using thermal or non-thermal technologies with device selection dependent on anatomy and tumor type.
      • A multidisciplinary approach to recurrent malignancy is key to a successful ablation complementing traditional therapies.

      Abstract

      As interventional oncology services within radiology mature, image-guided ablation techniques are increasingly applied to recurrent gynecologic malignancies. Ablation may be performed using thermal techniques like cryoablation, microwave ablation, or radiofrequency ablation, as well as non-thermal ones, such as focused ultrasound or irreversible electroporation. Feasibility and approach depend on tumor type, size, number, anatomic location, proximity of critical structures, and goals of therapy. Current indications include local control of limited metastatic disease or palliation of painful bone metastases refractory or unsuitable to conventional therapies. Technical aspects of these procedures, including methods to protect nearby critical structures are presented through illustrative examples. Cases amenable to image-guided ablation include, but are not limited to, hepatic or pulmonary metastases, musculoskeletal metastases, retroperitoneal nodal metastases, pelvic side wall disease, abdominal wall disease, and vaginal or vulvar tumors. Protective maneuvers, such as hydro-displacement of bowel, neuromonitoring, and retrograde pyeloperfusion through ureteral stents, permit safe ablation despite close proximity to vulnerable nerves or organs. Image-guided ablation offers an alternative modality to achieve local tumor control without the risks associated with surgery or systemic treatment in appropriately selected patients. A multidisciplinary approach to use of image-guided ablation includes collaboration between gynecologic oncology, interventional radiology, anesthesia, urology and radiation oncology teams allowing for appropriate patient-centered case selection. Long-term follow up and additional studies are needed to determine the oncologic benefits of such techniques.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Thompson R.H.
        • Atwell T.
        • Schmit G.
        • et al.
        Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses.
        Eur. Urol. 2015; 67: 252-259
        • McWilliams J.P.
        • Yamamoto S.
        • Raman S.S.
        • et al.
        Percutaneous ablation of hepatocellular carcinoma: current status.
        J. Vasc. Interv. Radiol. 2010; 21: S204-S213
        • Woodrum D.A.
        • Kawashima A.
        • Gorny K.R.
        • Mynderse L.A.
        Magnetic resonance-guided thermal therapy for localized and recurrent prostate cancer.
        Magn. Reson. Imaging Clin. N. Am. 2015; 23: 607-619
        • Callstrom M.R.
        • Woodrum D.A.
        • Nichols F.C.
        • et al.
        Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE).
        J. Thorac. Oncol. 2020; 15: 1200-1209
        • Luigi Cazzato R.
        • Auloge P.
        • De Marini P.
        • et al.
        Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients.
        Int. J. Hyperth. 2018; 35: 493-499
        • Solbiati L.
        • Ahmed M.
        • Cova L.
        • Ierace T.
        • Brioschi M.
        • Goldberg S.N.
        Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up.
        Radiology. 2012; 265: 958-968
        • Hamidi O.
        • Callstrom M.R.
        • Lee R.A.
        • et al.
        Outcomes of radiofrequency ablation therapy for large benign thyroid nodules: a Mayo Clinic case series.
        Mayo Clin. Proc. 2018; 93: 1018-1025
        • Schmitz J.J.
        • Schmit G.D.
        • Atwell T.D.
        • et al.
        Percutaneous cryoablation of extraabdominal desmoid tumors: a 10-year experience.
        AJR Am. J. Roentgenol. 2016; 207: 190-195
        • Browne J.E.
        • Gorny K.R.
        • Hangiandreou N.J.
        • et al.
        Comparison of Clinical Performance Between Two Generations of Magnetic Resonance-guided Focused Ultrasound Systems in Treatments of Uterine Leiomyomas.
        Acad Radiol. 2020; (in press)
        • Dibble E.H.
        • D’Amico K.C.
        • Bandera C.A.
        • Littrup P.J.
        Cryoablation of abdominal wall endometriosis: a minimally invasive treatment.
        AJR Am. J. Roentgenol. 2017; 209: 690-696
        • Welch B.T.
        • Ehman E.C.
        • VanBuren W.M.
        • et al.
        Percutaneous cryoablation of abdominal wall endometriosis: the Mayo Clinic approach.
        Abdom Radiol (NY). 2020; 45: 1813-1817
        • Liu B.
        • Huang G.
        • Jiang C.
        • et al.
        Ultrasound-guided percutaneous radiofrequency ablation of liver metastasis from ovarian cancer: a single-center initial experience.
        Int. J. Gynecol. Cancer. 2017; 27: 1261-1267
        • Solomon L.A.
        • Munkarah A.R.
        • Vorugu V.R.
        • et al.
        Image-guided percutaneous cryotherapy for the management of gynecologic cancer metastases.
        Gynecol. Oncol. 2008; 111: 202-207
        • Butros S.R.
        • DelCarmen M.G.
        • Uppot R.N.
        • Arellano R.S.
        Image-guided percutaneous thermal ablation of metastatic pelvic tumor from gynecologic malignancies.
        Obstet. Gynecol. 2014; 123: 500-505
        • Arellano R.S.
        • Flanders V.L.
        • Lee S.I.
        • Mueller P.R.
        • Gervais D.A.
        Imaging-guided percutaneous radiofrequency ablation of retroperitoneal metastatic disease in patients with gynecologic malignancies: clinical experience with eight patients.
        AJR Am. J. Roentgenol. 2010; 194: 1635-1638
        • Ahmed M.
        • Brace C.L.
        • Lee Jr., F.T.
        • Goldberg S.N.
        Principles of and advances in percutaneous ablation.
        Radiology. 2011; 258: 351-369
        • Chosy S.G.
        • Nakada S.Y.
        • Lee Jr., F.T.
        • Warner T.F.
        Monitoring renal cryosurgery: predictors of tissue necrosis in swine.
        J. Urol. 1998; 159: 1370-1374
        • Lee Jr., F.T.
        • Chosy S.G.
        • Littrup P.J.
        • Warner T.F.
        • Kuhlman J.E.
        • Mahvi D.M.
        CT-monitored percutaneous cryoablation in a pig liver model: pilot study.
        Radiology. 1999; 211: 687-692
        • Littrup P.J.
        • Jallad B.
        • Vorugu V.
        • et al.
        Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number.
        J. Vasc. Interv. Radiol. 2009; 20: 1343-1351
        • Sandison G.A.
        • Loye M.P.
        • Rewcastle J.C.
        • et al.
        X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery.
        Phys. Med. Biol. 1998; 43: 3309-3324
        • Brace C.L.
        Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?.
        Curr. Probl. Diagn. Radiol. 2009; 38: 135-143
        • Weisbrod A.J.
        • Atwell T.D.
        • Callstrom M.R.
        • Farrell M.A.
        • Mandrekar J.N.
        • Charboneau J.W.
        Percutaneous radiofrequency ablation with a multiple-electrode switching-generator system.
        J. Vasc. Interv. Radiol. 2007; 18: 1528-1532
        • Brace C.L.
        Microwave ablation technology: what every user should know.
        Curr. Probl. Diagn. Radiol. 2009; 38: 61-67
        • Gangi A.
        • Buy X.
        Percutaneous bone tumor management.
        Semin Intervent Radiol. 2010; 27: 124-136
        • Ahrar K.
        • Stafford R.J.
        Magnetic resonance imaging-guided laser ablation of bone tumors.
        Tech. Vasc. Interv. Radiol. 2011; 14: 177-182
        • Gangi A.
        • Alizadeh H.
        • Wong L.
        • Buy X.
        • Dietemann J.L.
        • Roy C.
        Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients.
        Radiology. 2007; 242: 293-301
        • Thompson S.M.
        • Callstrom M.R.
        • McKusick M.A.
        • Woodrum D.A.
        Initial results of image-guided percutaneous ablation as second-line treatment for symptomatic vascular anomalies.
        Cardiovasc. Intervent. Radiol. 2015; 38: 1171-1178
        • Thomson K.R.
        • Kavnoudias H.
        • Neal 2nd., R.E.
        Introduction to irreversible electroporation--principles and techniques.
        Tech. Vasc. Interv. Radiol. 2015; 18: 128-134
        • Bhonsle S.
        • Bonakdar M.
        • Neal 2nd, R.E.
        • et al.
        Characterization of irreversible electroporation ablation with a validated perfused organ model.
        J. Vasc. Interv. Radiol. 2016; 27 (e1912): 1913-1922
        • Davalos R.V.
        • Mir I.L.
        • Rubinsky B.
        Tissue ablation with irreversible electroporation.
        Ann. Biomed. Eng. 2005; 33: 223-231
        • Geraci L.
        • Napoli A.
        • Catalano C.
        • Midiri M.
        • Gagliardo C.
        Magnetic resonance imaging-guided focused ultrasound surgery for the treatment of symptomatic uterine fibroids.
        Case Rep Radiol. 2017; 2017: 2520989
        • Marigliano C.
        • Panzironi G.
        • Molisso L.
        • et al.
        First experience of real-time elastography with transvaginal approach in assessing response to MRgFUS treatment of uterine fibroids.
        Radiol. Med. 2016; 121: 926-934
        • Eckmann M.S.
        • Martinez M.A.
        • Lindauer S.
        • Khan A.
        • Ramamurthy S.
        Radiofrequency ablation near the bone-muscle interface alters soft tissue lesion dimensions.
        Reg. Anesth. Pain Med. 2015; 40: 270-275
        • Kurup A.N.
        • Morris J.M.
        • Schmit G.D.
        • et al.
        Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation.
        J. Vasc. Interv. Radiol. 2015; 26: 588-594
        • Kurup A.N.
        • Callstrom M.R.
        Ablation of skeletal metastases: current status.
        J. Vasc. Interv. Radiol. 2010; 21: S242-S250
        • Callstrom M.R.
        • Kurup A.N.
        Percutaneous ablation for bone and soft tissue metastases--why cryoablation?.
        Skelet. Radiol. 2009; 38: 835-839
        • Ahrar K.
        • Stafford R.J.
        Magnetic resonance imaging-guided laser ablation of bone tumors.
        Tech. Vasc. Interv. Radiol. 2011; 14: 177-182
        • Kurup A.N.
        • Morris J.M.
        • Schmit G.D.
        • et al.
        Neuroanatomic considerations in percutaneous tumor ablation.
        Radiographics. 2013; 33: 1195-1215
        • Kurup A.N.
        • Morris J.M.
        • Boon A.J.
        • et al.
        Motor evoked potential monitoring during cryoablation of musculoskeletal tumors.
        J. Vasc. Interv. Radiol. 2014; 25: 1657-1664
        • Tsoumakidou G.
        • Garnon J.
        • Ramamurthy N.
        • Buy X.
        • Gangi A.
        Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation.
        Cardiovasc. Intervent. Radiol. 2013; 36: 1624-1628
        • Cantwell C.P.
        • Wah T.M.
        • Gervais D.A.
        • et al.
        Protecting the ureter during radiofrequency ablation of renal cell cancer: a pilot study of retrograde pyeloperfusion with cooled dextrose 5% in water.
        J. Vasc. Interv. Radiol. 2008; 19: 1034-1040
        • Eswara J.R.
        • Gervais D.A.
        • Mueller P.R.
        • Arellano R.S.
        • Cantwell C.P.
        • McGovern F.J.
        Renal radiofrequency ablation with pyeloperfusion.
        Int. J. Urol. 2015; 22: 131-132
        • Marion J.T.
        • Schmitz J.J.
        • Schmit G.D.
        • et al.
        Safety and efficacy of retrograde pyeloperfusion for ureteral protection during renal tumor cryoablation.
        J. Vasc. Interv. Radiol. 2020; 31: 1249-1255
        • Kurup A.N.
        • Schmit G.D.
        • Morris J.M.
        • et al.
        Avoiding complications in bone and soft tissue ablation.
        Cardiovasc. Intervent. Radiol. 2017; 40: 166-176
        • Tsoumakidou G.
        • Buy X.
        • Garnon J.
        • Enescu J.
        • Gangi A.
        Percutaneous thermal ablation: how to protect the surrounding organs.
        Tech. Vasc. Interv. Radiol. 2011; 14: 170-176