Advertisement

The current landscape of molecular profiling in the treatment of epithelial ovarian cancer

Published:October 11, 2020DOI:https://doi.org/10.1016/j.ygyno.2020.09.043

      Highlights

      • All women with ovarian cancer should be offered germline testing for BRCA mutations and other cancer susceptibility genes
      • Patients with deleterious BRCA mutations should be offered frontline maintenance therapy with a PARP inhibitor
      • Assays for homologous recombination deficiency may guide treatment options in patients without a deleterious BRCA mutation
      • Tumor molecular profiling may identify targeted therapies for off-label use in patients with limited treatment options

      Abstract

      Advances in next generation sequencing have allowed for rapid and economical germline and tumor genomic profiling. Targeted therapies based on molecular tumor profiling are now integrated into treatment guidelines for many solid tumors. In epithelial ovarian cancer, 50% of tumors possess damaging mutations in homologous recombination repair genes (aka homologous recombination deficiency or HRD) which includes the BRCA genes. Deleterious BRCA mutations and HRD have recently emerged as predictive biomarkers for the use of PARP inhibitors in ovarian cancer. Every patient with ovarian cancer must be referred for genetic counseling and germline testing for BRCA mutations. Multigene panel genetic testing may be more informative and cost-effective than limited testing of cancer susceptibility genes. Patients without a germline deleterious BRCA mutation must be assessed for a somatic BRCA mutation. Assays for HRD may help guide treatment options in women who do not have a BRCA mutation. Currently, all patients with a germline or somatic BRCA mutation should be offered upfront maintenance therapy with a PARP inhibitor. During May 2020, options for maintenance therapy with a PARP inhibitor were expanded to patients with HRD and HR-proficient tumors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blagden S.P.
        Harnessing Pandemonium: The Clinical Implications of Tumor Heterogeneity in Ovarian Cancer.
        Front. Oncol. 2015; 5
        • Müllauer L.
        Next generation sequencing: clinical applications in solid tumours.
        Memo. 2017; 10: 244-247
        • Chang H.H.Y.
        • Pannunzio N.R.
        • Adachi N.
        • Lieber M.R.
        Non-homologous DNA end joining and alternative pathways to double-strand break repair.
        Nat. Rev. Mol. Cell Biol. 2017; 18: 495-506
        • Hastings P.J.
        • Lupski J.R.
        • Rosenberg S.M.
        • Ira G.
        Mechanisms of change in gene copy number.
        Nat. Rev. Genet. 2009; 10: 551-564
        • Ottaviani D.
        • LeCain M.
        • Sheer D.
        The role of microhomology in genomic structural variation.
        Trends Genet. 2014; 30: 85-94
        • Hennessy B.T.J.
        • Timms K.M.
        • Carey M.S.
        • et al.
        Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer.
        J. Clin. Oncol. 2010; 28: 3570-3576
        • Bell D.
        • Berchuck A.
        • Birrer M.
        • et al.
        Integrated genomic analyses of ovarian carcinoma.
        Nature. 2011; 474: 609-615
        • Swisher E.M.
        • Lin K.K.
        • Oza A.M.
        • et al.
        Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial.
        Lancet Oncol. 2017; 18: 75-87
        • Pennington K.P.
        • Walsh T.
        • Harrell M.I.
        • et al.
        Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas.
        Clin. Cancer Res. 2014; 20: 764
        • Norquist B.M.
        • Harrell M.I.
        • Brady M.F.
        • et al.
        Inherited mutations in women with ovarian carcinoma.
        JAMA Oncology. 2016; 2: 482-490
        • Pennington K.P.
        • Swisher E.M.
        Hereditary ovarian cancer: beyond the usual suspects.
        Gynecol. Oncol. 2012; 124: 347-353
        • Norquist B.M.
        • Brady M.F.
        • Harrell M.I.
        • et al.
        Mutations in homologous recombination genes and outcomes in ovarian carcinoma patients in GOG 218: an NRG oncology/gynecologic oncology group study.
        Clin. Cancer Res. 2018; 24: 777
        • Walsh T.
        • Casadei S.
        • Lee M.K.
        • et al.
        Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing.
        Proc. Natl. Acad. Sci. 2011; 108: 18032
        • Mary B.D.
        • Robert P.
        • Jennifer E.A.
        • et al.
        Genetic/familial high-risk assessment: breast and ovarian, version 2.2015.
        J. Natl. Compr. Cancer Netw. 2016; 14: 153-162
        • Tan D.S.P.
        • Rothermundt C.
        • Thomas K.
        • et al.
        BRCAness Syndrome in Ovarian Cancer: A Case-Control Study Describing the Clinical Features and Outcome of Patients With Epithelial Ovarian Cancer Associated With BRCA1 and BRCA2 Mutations.
        J. Clin. Oncol. 2008; 26: 5530-5536
        • Ray Chaudhuri A.
        • Nussenzweig A.
        The multifaceted roles of PARP1 in DNA repair and chromatin remodelling.
        Nat. Rev. Mol. Cell Biol. 2017; 18: 610-621
        • Pommier Y.
        • O’Connor M.J.
        • de Bono J.
        Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action.
        Sci. Transl. Med. 2016; 8: 362ps317
        • George A.
        • Kaye S.
        • Banerjee S.
        Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer.
        Nat. Rev. Clin. Oncol. 2017; 14: 284-296
        • Hussain M.
        • Mateo J.
        • Fizazi K.
        • Saad F.
        • Shore N.
        • Sandhu S.
        PROfound: phase 3 study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations.
        Ann. Oncol. 2019; 30: v851-v934
        • Mateo J.
        • Porta N.
        • Bianchini D.
        • et al.
        Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial.
        Lancet. 2020; 21: 162-174
        • Watkins J.A.
        • Irshad S.
        • Grigoriadis A.
        • Tutt A.N.J.
        Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers.
        Breast Cancer Res. 2014; 16: 211
        • Abkevich V.
        • Timms K.M.
        • Hennessy B.T.
        • et al.
        Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer.
        Br. J. Cancer. 2012; 107: 1776-1782
        • Birkbak N.J.
        • Wang Z.C.
        • Kim J.-Y.
        • et al.
        Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents.
        Cancer Discovery. 2012; 2: 366
        • Timms K.M.
        • Abkevich V.
        • Hughes E.
        • et al.
        Association of BRCA1/2defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes.
        Breast Cancer Res. 2014; 16: 475
        • Popova T.
        • Manié E.
        • Rieunier G.
        • et al.
        Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation.
        Cancer Res. 2012; 72: 5454
        • Vieira M.L.C.
        • Santini L.
        • Diniz A.L.
        Munhoz CdF. Microsatellite markers: what they mean and why they are so useful.
        Genet. Mol. Biol. 2016; 39: 312-328
        • Pérez-Cabornero L.
        • Infante Sanz M.
        • Velasco Sampedro E.
        • et al.
        Frequency of rearrangements in lynch syndrome cases associated with MSH2: characterization of a new deletion involving both EPCAM and the 5′ part of MSH2.
        Cancer Prev. Res. 2011; 4: 1556-1562
        • Murphy M.A.
        • Wentzensen N.
        Frequency of mismatch repair deficiency in ovarian cancer: a systematic review.
        Int. J. Cancer. 2011; 129: 1914-1922
        • Umar A.
        • Boland C.R.
        • Terdiman J.P.
        • et al.
        Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (lynch syndrome) and microsatellite instability.
        J. Natl. Cancer Inst. 2004; 96: 261-268
        • FoundationOne CDx™ Technical Information
        (Accessed 26 Jan 2020)
        • Büttner R.
        • Longshore J.W.
        • López-Ríos F.
        • et al.
        Implementing TMB measurement in clinical practice: considerations on assay requirements.
        ESMO Open. 2019; 4e000442
        • Kastenhuber E.R.
        • Lowe S.W.
        Putting p53 in context.
        Cell. 2017; 170: 1062-1078
        • Konstantinopoulos P.A.
        • Norquist B.
        • Lacchetti C.
        • et al.
        Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline.
        J. Clin. Oncol. 2020; 38: 1222-1245
        • Singer G.
        • Oldt III, R.
        • Cohen Y.
        • et al.
        Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma.
        JNCI. 2003; 95: 484-486
        • Gershenson D.
        • Brady W.
        A randomized phase II/III study to assess the efficacy of trametinib in patients with recurrent or progressive low-grade serous ovarian or peritoneal cancer.
        Ann. Oncol. 2019; 30: v851-v934
        • Grisham R.
        • Monk J.B.
        • Banerjee S.
        • et al.
        1 MILO/ENGOT-OV11: Phase-3 study of binimetinib versus physician’s choice chemotherapy (PCC) in recurrent or persistent low-grade serous carcinomas of the ovary, fallopian tube, or primary peritoneum.
        Int. J. Gynecol. Cancer. 2019; 29: A1
        • Kandoth C.
        • McLellan M.D.
        • Vandin F.
        • et al.
        Mutational landscape and significance across 12 major cancer types.
        Nature. 2013; 502: 333-339
        • Ciriello G.
        • Miller M.L.
        • Aksoy B.A.
        • Senbabaoglu Y.
        • Schultz N.
        • Sander C.
        Emerging landscape of oncogenic signatures across human cancers.
        Nat. Genet. 2013; 45: 1127-1133
        • Force U.P.S.T.
        Risk assessment, genetic counseling, and genetic testing for BRCA-related Cancer: US preventive services task Force recommendation statement.
        JAMA. 2019; 322: 652-665
        • Cook-Deegan R.
        • Niehaus A.
        After myriad: genetic testing in the wake of recent supreme court decisions about gene patents.
        Curr. Gen. Med. Rep. 2014; 2: 223-241
        • Gunderson C.C.
        • Moore K.N.
        BRACAnalysis CDx as a companion diagnostic tool for Lynparza.
        Expert. Rev. Mol. Diagn. 2015; 15: 1111-1116
        • Kurian A.W.
        • Ward K.C.
        • Hamilton A.S.
        • et al.
        Uptake, results, and outcomes of Germline multiple-gene sequencing after diagnosis of breast Cancer.
        JAMA Oncology. 2018; 4: 1066-1072
        • Foote J.R.
        • Lopez-Acevedo M.
        • Buchanan A.H.
        • et al.
        Cost comparison of genetic testing strategies in women with epithelial ovarian Cancer.
        J. Oncol. Practice. 2017; 13: e120-e129
        • Randall L.M.
        • Pothuri B.
        • Swisher E.M.
        • et al.
        Multi-disciplinary summit on genetics services for women with gynecologic cancers: a Society of Gynecologic Oncology White Paper.
        Gynecol. Oncol. 2017; 146: 217-224
        • LaDuca H.
        • Stuenkel A.J.
        • Dolinsky J.S.
        • et al.
        Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients.
        in Med. 2014; 16: 830-837
        • Minion L.E.
        • Dolinsky J.S.
        • Chase D.M.
        • Dunlop C.L.
        • Chao E.C.
        • Monk B.J.
        Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2.
        Gynecol. Oncol. 2015; 137: 86-92
        • Tung N.
        • Battelli C.
        • Allen B.
        • et al.
        Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel.
        Cancer. 2015; 121: 25-33
        • Eggington J.M.
        • Bowles K.R.
        • Moyes K.
        • et al.
        A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes.
        Clin. Genet. 2014; 86: 229-237
        • Kurian A.W.
        • Ward K.C.
        • Howlader N.
        • et al.
        Genetic testing and results in a population-based cohort of breast Cancer patients and ovarian Cancer patients.
        J. Clin. Oncol. 2019; 37: 1305-1315
        • Lynce F.
        • Isaacs C.
        How far do we go with genetic evaluation? Gene, panel, and tumor testing.
        in: American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting. 35. 2016: e72-e78
        • Yadav S.
        • Fulbright J.
        • Dreyfuss H.
        • et al.
        Outcomes of retesting BRCA-negative patients using multigene panels.
        J. Clin. Oncol. 2015; 33: 23
        • Meienberg J.
        • Zerjavic K.
        • Keller I.
        • et al.
        New insights into the performance of human whole-exome capture platforms.
        Nucleic Acids Res. 2015; 43: e76
        • Barbitoff Y.A.
        • Polev D.E.
        • Glotov A.S.
        • et al.
        Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage.
        Sci. Rep. 2020; 10: 2057
        • Clark M.J.
        • Chen R.
        • Lam H.Y.K.
        • et al.
        Performance comparison of exome DNA sequencing technologies.
        Nat. Biotechnol. 2011; 29: 908-914
        • Seaby E.G.
        • Pengelly R.J.
        • Ennis S.
        Exome sequencing explained: a practical guide to its clinical application.
        Briefings Funct. Genomics. 2015; 15: 374-384
        • Green R.C.
        • Berg J.S.
        • Grody W.W.
        • et al.
        ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing.
        in Med. 2013; 15: 565-574
        • Meynert A.M.
        • Ansari M.
        • FitzPatrick D.R.
        • Taylor M.S.
        Variant detection sensitivity and biases in whole genome and exome sequencing.
        BMC Bioinformatics. 2014; 15: 247
        • Zare F.
        • Dow M.
        • Monteleone N.
        • Hosny A.
        • Nabavi S.
        An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.
        BMC Bioinformatics. 2017; 18: 286
        • Khan S.S.
        • Chen A.P.
        • Takebe N.
        Impact of NCI-MATCH: a Nationwide oncology precision medicine trial.
        Expert Re. Precision Med. Drug Dev. 2019; 4: 251-258
        • Matulonis U.A.
        • Shapira-Frommer R.
        • Santin A.D.
        • et al.
        Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study.
        Ann. Oncol. 2019; 30: 1080-1087
        • Foundation One Liquid Technical Specifications
        (Accessed 26 Jan 2020)
        • Gerlinger M.
        • Rowan A.J.
        • Horswell S.
        • et al.
        Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.
        N. Engl. J. Med. 2012; 366: 883-892
        • Talmadge J.E.
        Clonal selection of metastasis within the life history of a tumor.
        Cancer Res. 2007; 67: 11471
        • Prasad V.
        Why the US Centers for Medicare and Medicaid Services (CMS) should have required a randomized trial of foundation medicine (F1CDx) before paying for it.
        Ann. Oncol. 2017; 29: 298-300
        • Bhattacharya A.
        • Bense R.D.
        • Urzúa-Traslaviña C.G.
        • de Vries E.G.E.
        • van Vugt M.A.T.M.
        • Fehrmann R.S.N.
        Transcriptional effects of copy number alterations in a large set of human cancers.
        Nat. Commun. 2020; 11: 715
        • Kukurba K.R.
        • Montgomery S.B.
        RNA sequencing and analysis.
        Cold Spring Harb Protoc. 2015; 2015: 951-969
        • Wang J.
        • Dean D.C.
        • Hornicek F.J.
        • Shi H.
        • Duan Z.
        RNA sequencing (RNA-Seq) and its application in ovarian cancer.
        Gynecol. Oncol. 2019; 152: 194-201
        • myChoice HRD
        Summary of Safety and Effectiveness Data.
        2019 (Accessed 08 Apr 2020)
        • FoundationFocus™
        CDxBRCA LOH Technical Information Summary.
        2018 (Accessed 26 Jan 2020)
        • Hodgson D.R.
        • Dougherty B.A.
        • Lai Z.
        • et al.
        Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes.
        Br. J. Cancer. 2018; 119: 1401-1409
        • Telli M.L.
        • Timms K.M.
        • Reid J.
        • et al.
        Homologous recombination deficiency (HRD) score predicts response to platinum-containing Neoadjuvant chemotherapy in patients with triple-negative breast Cancer.
        Clin. Cancer Res. 2016; 22: 3764
        • Lin K.K.
        • Harrell M.I.
        • Oza A.M.
        • et al.
        BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor Rucaparib in high-grade ovarian carcinoma.
        Cancer Discovery. 2019; 9: 210
        • Norquist B.
        • Wurz K.A.
        • Pennil C.C.
        • et al.
        Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas.
        J. Clin. Oncol. 2011; 29: 3008-3015
        • Moore K.
        • Colombo N.
        • Scambia G.
        • et al.
        Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer.
        N. Engl. J. Med. 2018; 379: 2495-2505
        • González-Martín A.
        • Pothuri B.
        • Vergote I.
        • et al.
        Niraparib in patients with newly diagnosed advanced ovarian Cancer.
        N. Engl. J. Med. 2019; 381: 2391-2402
        • Coleman R.L.
        • Fleming G.F.
        • Brady M.F.
        • et al.
        Veliparib with first-line chemotherapy and as maintenance therapy in ovarian Cancer.
        N. Engl. J. Med. 2019; 381: 2403-2415
        • Vergote I.
        • Banerjee S.
        • Gerdes A.-M.
        • et al.
        Current perspectives on recommendations for BRCA genetic testing in ovarian cancer patients.
        Eur. J. Cancer. 2016; 69: 127-134
        • Lancaster J.M.
        • Powell C.B.
        • L-m Chen
        • Richardson D.L.
        Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions.
        Gynecol. Oncol. 2015; 136: 3-7
        • Coleman R.L.
        • Swisher E.M.
        • Oza A.M.
        • et al.
        Refinement of prespecified cutoff for genomic loss of heterozygosity (LOH) in ARIEL2 part 1: A phase II study of rucaparib in patients (pts) with high grade ovarian carcinoma (HGOC).
        J. Clin. Oncol. 2016; 34: 5540
        • Moore K.N.
        • Secord A.A.
        • Geller M.A.
        • et al.
        Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
        Lancet Oncol. 2019; 20: 636-648
        • Moore K.N.
        • Secord A.A.
        • Geller M.A.
        • et al.
        QUADRA: A phase 2, open-label, single-arm study to evaluate niraparib in patients (pts) with relapsed ovarian cancer (ROC) who have received ≥3 prior chemotherapy regimens.
        J. Clin. Oncol. 2018; 36: 5514
        • Moore K.
        • Secord A.
        • Geller M.
        QUADRA: a phase II, open-label, single-arm study to evaluate niraparib in patients (pts) with relapsed ovarian cancer (ROC) in 4th or later line of therapy: results from the tBRCAmut subset.
        Ann. Oncol. 2018; 29: 944P
        • The Tempus HRD
        Test.
        2020 (Accessed 18 Aug 2020)
        • Shen C.
        • Meric-Bernstam F.
        • Su X.
        • Mendelsohn J.
        • Giordano S.
        Prevalence of actionable mutations and copy number alterations and the price of a genomic testing panel.
        Oncotarget. 2016; 7: 71686-71695
        • Banerjee S
        • Moore K
        • Colombo N
        • et al.
        811MO Maintenance olaparib for patients (pts) with newly diagnosed, advanced ovarian cancer (OC) and a BRCA mutation (BRCAm): 5-year (y) follow-up (f/u) from SOLO1.
        Annals of Oncology. 2020; 31: S613