Advertisement

Antibody-drug conjugates in gynecologic malignancies

  • Elizabeth K. Lee
    Affiliations
    Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
    Search for articles by this author
  • Joyce F. Liu
    Correspondence
    Corresponding author at: Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
    Affiliations
    Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

    Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
    Search for articles by this author

      Highlights

      • ADCs are a rapidly growing class of oncologic agents that can confer tumor-specific delivery of a cytotoxic agent.
      • Mirvetuximab soravtansine is an anti-folate receptor alpha ADC currently in phase III clinical trials in ovarian cancer.
      • Mesothelin, tissue factor, MUC16 (CA125), NaPi2B, and Trop2 are additional ADC targets studied in gynecologic malignancies.

      Abstract

      Antibody drug conjugates (ADCs) are an exciting class of oncologic therapeutics. ADCs have been FDA approved in hematologic malignancies and breast cancer and are a growing area of study in numerous solid malignancies. The desire for tumor-specific therapies with decreased systemic toxicity has driven over a decade of research into the design and optimization of ADCs, which are now in a third generation of development. Gynecologic malignancies in particular suffer a dearth of novel therapies. This review will examine the field of ADCs in gynecologic cancers, focusing on ADCs targeting folate receptor alpha (FRα), mesothelin, tissue factor, MUC16 (CA125), NaPi2B, and Trop2.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McDonagh C.F.
        • Turcott E.
        • Westendorf L.
        • et al.
        Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment.
        Protein Eng. Des. Sel. 2006; 19: 299-307https://doi.org/10.1093/protein/gzl013
      1. Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol.. 2008;26(8):925–932. doi:https://doi.org/10.1038/nbt.1480.

      2. Shen BQ, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol.. 2012;30(2):184–189. doi:https://doi.org/10.1038/nbt.2108.

      3. Schlothauer T, Herter S, Koller CF, et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng. Des. Sel. 2016;29(10):457–466. doi:https://doi.org/10.1093/protein/gzw040.

        • Zhang D.
        • Goldberg M.V.
        • Chiu M.L.
        Fc engineering approaches to enhance the agonism and effector functions of an anti-OX40 antibody.
        J. Biol. Chem. 2016; 291: 27134-27146https://doi.org/10.1074/jbc.M116.757773
      4. Wagner-Rousset E, Janin-Bussat MC, Colas O, et al. Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs. 2014;6(1):273–285. doi:https://doi.org/10.4161/mabs.26773.

        • Beck A.
        • Reichert J.M.
        Antibody-drug conjugates: present and future.
        MAbs. 2014; 6: 15-17https://doi.org/10.4161/mabs.27436
      5. Sun X, Ponte JF, Yoder NC, et al. Effects of drug–antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody–Maytansinoid conjugates. Bioconjug. Chem.. 2017;28(5):1371–1381. doi:https://doi.org/10.1021/acs.bioconjchem.7b00062.

        • Tsuchikama K.
        • An Z.
        Antibody-drug conjugates: recent advances in conjugation and linker chemistries.
        Protein Cell. 2018; 9: 33-46https://doi.org/10.1007/s13238-016-0323-0
        • Beck A.
        • Goetsch L.
        • Dumontet C.
        • Corvaïa N.
        Strategies and challenges for the next generation of antibody-drug conjugates.
        Nat. Rev. Drug Discov. 2017; 16: 315-337https://doi.org/10.1038/nrd.2016.268
      6. Rossin R, Versteegen RM, Wu J, et al. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun.. 2018;9(1). doi:https://doi.org/10.1038/s41467-018-03880-y.

        • Elnakat H.
        • Ratnam M.
        Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy.
        Adv. Drug Deliv. Rev. 2004; 56: 1067-1084https://doi.org/10.1016/j.addr.2004.01.001
        • Toffoli G.
        • Cernigoi C.
        • Russo A.
        • Gallo A.
        • Bagnoli M.
        • Boiocchi M.
        Overeexpression of folate binding protein in ovarian cancers.
        Int. J. Cancer. 1997; 74: 193-198
        • Boogerd L.S.F.
        • Boonstra M.C.
        • Beck A.-J.
        • et al.
        Concordance of folate receptor-α expression between biopsy, primary tumor and metastasis in breast cancer and lung cancer patients.
        Oncotarget. 2016; 7https://doi.org/10.18632/oncotarget.7856
      7. Erickson HK, Park PU, Widdison WC, et al. Antibody-Maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66(8):4426 LP-4433. http://cancerres.aacrjournals.org/content/66/8/4426.abstract.

        • Kovtun Y.V.
        • Audette C.A.
        • Ye Y.
        • et al.
        Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen.
        Cancer Res. 2006; 66: 3214 LP-3221
        • Moore K.N.
        • Borghaei H.
        • O'Malley D.M.
        • et al.
        Phase 1 dose-escalation study of mirvetuximab soravtansine (IMGN853), a folate receptor α-targeting antibody-drug conjugate, in patients with solid tumors.
        Cancer. 2017; 123: 3080-3087https://doi.org/10.1002/cncr.30736
        • Moore K.N.
        • Martin L.P.
        • O'Malley D.M.
        • et al.
        Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase i expansion study.
        J. Clin. Oncol. 2017; 35: 1112-1118https://doi.org/10.1200/JCO.2016.69.9538
        • Moore K.N.
        • Matulonis U.A.
        • O'Malley D.M.
        • et al.
        Mirvetuximab soravtansine (IMGN853), a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in platinum-resistant epithelial ovarian cancer (EOC) patients (pts): activity and safety analyses in phase I pooled expansion cohorts.
        J. Clin. Oncol. 2017; 35: 5547https://doi.org/10.1200/JCO.2017.35.15_suppl.5547
      8. Martin LP, Konner JA, Moore KN, et al. Characterization of folate receptor alpha (FRα) expression in archival tumor and biopsy samples from relapsed epithelial ovarian cancer patients: a phase I expansion study of the FRα-targeting antibody-drug conjugate mirvetuximab soravtansine. Gynecol. Oncol.. 2017;147(2):402–407. doi:https://doi.org/10.1016/j.ygyno.2017.08.015.

      9. Ponte JF, Ab O, Lanieri L, et al. Mirvetuximab Soravtansine (IMGN853), a folate receptor alpha–targeting antibody-drug conjugate, potentiates the activity of standard of care therapeutics in ovarian Cancer models. Neoplasia (United States). 2016;18(12):775–784. doi:https://doi.org/10.1016/j.neo.2016.11.002.

        • Moore K.N.
        • O'Malley D.M.
        • Vergote I.
        • et al.
        Safety and activity findings from a phase 1b escalation study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with carboplatin in patients with platinum-sensitive ovarian cancer.
        Gynecol. Oncol. 2018; : 1-7https://doi.org/10.1016/j.ygyno.2018.07.017
      10. Matulonis UA. No Title. In: Mirvetuximab Soravtansine, a Folate Receptor Alpha (FRα)-Targeting Antibody-Drug Conjugate (ADC), with Pembrolizumab in Platinum-Resistant Ovarian cancer (PROC): Initial Results of an Expansion Cohort from FORWARD II, a Phase Ib Study. 2018:Eur. Soc. Med. Oncol., (October 20).

        • Hassan R.
        • Bera T.
        • Pastan I.
        Mesothelin: a new target for immunotherapy mesothelin: a new target for immunotherapy.
        Clin. Cancer Res. 2004; 10: 3937-3942https://doi.org/10.1158/1078-0432.CCR-03-0801
        • Hassan R.
        • Kreitman R.J.
        • Pastan I.
        • Willingham M.C.
        Localization of mesothelin in epithelial ovarian cancer.
        Appl. Immunohistochem. Mol. Morphol. 2005; 13: 243-247https://doi.org/10.1097/01.pai.00000141545.36485.d6
        • Bharadwaj U.
        • Marin-Muller C.
        • Li M.
        • Chen C.
        • Yao Q.
        Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression.
        Mol. Cancer. 2011; https://doi.org/10.1186/1476-4598-10-106
        • Chang M.-C.
        • Chen C.-A.
        • Chen P.-J.
        • et al.
        Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways.
        Biochem. J. 2012; 442: 293-302https://doi.org/10.1042/BJ20110282
      11. . Gubbels JAA, Belisle J, Onda M, et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol. Cancer. 2006;5:1–16. doi:https://doi.org/10.1186/1476-4598-5-50.

      12. Hanaoka T, Hasegawa K, Kato T, et al. Correlation between tumor mesothelin expression and serum mesothelin in patients with epithelial ovarian carcinoma: a potential noninvasive biomarker for mesothelin-targeted therapy. Mol. Diagn. Ther.. 2017;21(2):187–198. doi:https://doi.org/10.1007/s40291-017-0255-2.

      13. Quanz M, Hagemann UB, Zitzmann-kolbe S, et al. Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models. 2018;9(75):34103–34121.

      14. Golfier S, Kopitz C, Kahnert A, et al. Anetumab Ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther.. 2014;13(6):1537–1548. doi:https://doi.org/10.1158/1535-7163.MCT-13-0926.

      15. Iurie Bulat, Kathleen N. Moore, Alexei Haceatrean, John Woojune Chung, Prabhu Rajagopalan, Chenghua Xia, Dirk Laurent, Barrett H., Childs AS. Phase Ib study of anti-mesothelin antibody drug conjugate anetumab ravtansine in combination with pegylated liposomal doxorubicin in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. In: J. Clin. Oncol.. 2018:36 (suppl; abstr 5571).

        • Leppert U.
        • Eisenreich A.
        The role of tissue factor isoforms in cancer biology.
        Int. J. Cancer. 2015; 137: 497-503https://doi.org/10.1002/ijc.28959
      16. Magnus N, Garnier D, Meehan B, et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc. Natl. Acad. Sci. U. S. A.. 2014;111(9):3544–3549. doi:https://doi.org/10.1073/pnas.1314118111.

      17. Cocco E, Varughese J, Buza N, et al. Tissue factor expression in ovarian cancer: implications for immunotherapy with hI-con1, a factor VII-IgGF(c) chimeric protein targeting tissue factor. Clin. Exp. Metastasis. 2011;28(7):689–700. doi:https://doi.org/10.1007/s10585-011-9401-0.

      18. Cocco E, Varughese J, Buza N, et al. Expression of tissue factor in adenocarcinoma and squamous cell carcinoma of the uterine cervix: implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor. BMC Cancer. 2011;11:263. doi:https://doi.org/10.1186/1471-2407-11-263.

      19. Cocco E, Hu Z, Richter CE, et al. hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor for immunotherapy of uterine serous papillary carcinoma. Br. J. Cancer. 2010;103(6):812–819. doi:https://doi.org/10.1038/sj.bjc.6605760.

      20. Breij ECW, De Goeij BECG, Verploegen S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74(4):1214–1226. doi:https://doi.org/10.1158/0008-5472.CAN-13-2440.

      21. Chenard-Poirier M, Hong DS, Coleman R, et al. 1184PA phase I/II safety study of tisotumab vedotin (HuMax®-TF-ADC) in patients with solid tumors. Ann. Oncol. 2017;28(suppl_5). doi:https://doi.org/10.1093/annonc/mdx376.049.

      22. Vergote I, Concin N, Dean E, et al. A Phase IIa Study of Tisotumab Vedotin (Humax®-Tf-Adc) in Patients with Relapsed, Recurrent and/or Metastatic Cervical Cancer. 1–16.

        • Yin B.W.T.
        • Lloyd K.O.
        Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16.
        J. Biol. Chem. 2001; 276: 27371-27375https://doi.org/10.1074/jbc.M103554200
        • Kufe D.W.
        Mucins in cancer: function, prognosis and therapy.
        Nat. Rev. Cancer. 2009; 9: 874-885https://doi.org/10.1038/nrc2761
        • Boivin M.
        • Lane D.
        • Piché A.
        • Rancourt C.
        CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis.
        Gynecol. Oncol. 2009; 115: 407-413https://doi.org/10.1016/j.ygyno.2009.08.007
      23. Gubbels JAA, Felder M, Horibata S, et al. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol. Cancer. 2010;9:1–15. doi:https://doi.org/10.1186/1476-4598-9-11.

        • Chen S.H.
        • Hung W.C.
        • Wang P.
        • Paul C.
        • Konstantopoulos K.
        Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation.
        Sci. Rep. 2013; 3: 1-10https://doi.org/10.1038/srep01870
      24. Liu JF, Moore KN, Birrer MJ, et al. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol.. 2016;27(11):2124–2130. doi:https://doi.org/10.1093/annonc/mdw401.

        • Liu J.F.
        • Moore K.N.
        • Wang J.S.
        • et al.
        Abstract CT009: targeting MUC16 with the THIOMAB™-drug conjugate DMUC4064A in patients with platinum-resistant ovarian cancer: a phase I escalation study.
        Cancer Res. 2017; 77 (CT009-CT009)https://doi.org/10.1158/1538-7445.AM2017-CT009
        • Feild J. a
        • Zhang L.
        • K a Brun
        • Brooks D.P.
        • Edwards R.M.
        Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine.
        Biochem. Biophys. Res. Commun. 1999; 258: 578-582https://doi.org/10.1006/bbrc.1999.0666
      25. Finstad CL, Lloyd KO, Federici MG, et al. Distribution of radiolabeled monoclonal antibody MX35 F(ab′)2 in tissue samples by storage phosphor screen image analysis: evaluation of antibody localization to micrometastatic disease in epithelial ovarian cancer. Clin. Cancer Res. 1997;3(8):1433–1442.

      26. Burris HA, Gordon MS, Gerber DE, et al. A phase I study of DNIB0600A, an antibody-drug conjugate (ADC) targeting NaPi2b, in patients (pts) with non-small cell lung cancer (NSCLC) or platinum-resistant ovarian cancer (OC). J. Clin. Oncol.. 2014;32(15_suppl):2504. doi:https://doi.org/10.1200/jco.2014.32.15_suppl.2504.

      27. Banerjee S, Oza AM, Birrer MJ, et al. Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann. Oncol.. 2018;29(4):917–923. doi:https://doi.org/10.1093/annonc/mdy023

      28. Trerotola M, Cantanelli P, Guerra E, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32(2):222–233. doi:https://doi.org/10.1038/onc.2012.36.

      29. Starodub AN, Ocean AJ, Shah MA, et al. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin. Cancer Res.. 2015;21(17):3870–3878. doi:https://doi.org/10.1158/1078-0432.CCR-14-3321.

      30. Ocean AJ, Starodub AN, Bardia A, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: safety and pharmacokinetics. Cancer. 2017;123(19):3843–3854. doi:https://doi.org/10.1002/cncr.30789.

      31. Han C, Bellone S, Schwartz PE, et al. Sacituzumab Govitecan (IMMU-132) in treatment-resistant uterine serous carcinoma: a case report. Gynecol. Oncol. Rep.. 2018;25(May):37–40. doi:https://doi.org/10.1016/j.gore.2018.05.009.

        • Loganzo F.
        • Sung M.
        • Gerber H.-P.
        Mechanisms of resistance to antibody–drug conjugates.
        Mol. Cancer Ther. 2016; 15: 2825-2834https://doi.org/10.1158/1535-7163.MCT-16-0408
        • Sung M.
        • Tan X.
        • Lu B.
        • et al.
        Caveolae-mediated endocytosis as a novel mechanism of resistance to Trastuzumab Emtansine (T-DM1).
        Mol. Cancer Ther. 2018; 17: 243-253https://doi.org/10.1158/1535-7163.MCT-17-0403
      32. Ríos-Luci C, García-Alonso S, Díaz-Rodríguez E, et al. Resistance to the antibody-drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res.. 2017;77(17):4639–4651. doi:https://doi.org/10.1158/0008-5472.CAN-16-3127.

      33. Hamblett KJ, Jacob AP, Gurgel JL, et al. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res.. 2015;75(24):5329–5340. doi:https://doi.org/10.1158/0008-5472.CAN-15-1610.

        • Kavallaris M.
        Microtubules and resistance to tubulin-binding agents.
        Nat. Rev. Cancer. 2010; 10: 194-204https://doi.org/10.1038/nrc2803