Advertisement

Germline pathogenic variants identified in women with ovarian tumors

Published:October 12, 2018DOI:https://doi.org/10.1016/j.ygyno.2018.09.030

      Highlights

      • We report on 4439 ovarian cancer cases undergoing multi-gene cancer panel testing.
      • Genes with positive results, in order of frequency, included: BRCA1, BRCA2, CHEK2, BRIP1, ATM, RAD51C, RAD51D, and MSH6.
      • Homologous recombination genes account for 33.7% of findings.

      Abstract

      Objective

      The recognition of genes implicated in ovarian cancer risk beyond BRCA1, BRCA2, and the Lynch syndrome genes has increased the variety of testing options available to providers and patients. We report the frequency of pathogenic variants identified among individuals with ovarian cancer undergoing clinical genetic testing via a multi-gene hereditary cancer panel.

      Methods

      Genetic testing of up to 32 genes using a hereditary cancer panel was performed on 4439 ovarian cancer cases, and results were analyzed for frequency of pathogenic variants. Statistical comparisons were made using t-tests and Fisher's exact tests.

      Results

      The positive yield was 13.2%. While BRCA1/2 pathogenic variants were most frequent, one third (33.7%) of positive findings were in other homologous recombination genes, and accounted for over 40.0% of findings in endometrioid and clear cell cases. Women with a personal history of breast cancer (22.1%), who reported a family history of ovarian cancer (17.7%), and/or serous histology (14.7%) were most likely to harbor a pathogenic variant. Those with very early onset (<30 years) and late onset (≥70 years) ovarian cancer had low positive yields.

      Conclusions

      Our study highlights the genetic heterogeneity of ovarian cancer, showing that a large proportion of cases are not due to BRCA1/2 and the Lynch syndrome genes, but still have an identifiable hereditary basis. These findings substantiate the utility of multi-gene panel testing in ovarian cancer care regardless of age at diagnosis, family history, or histologic subtype, providing evidence for testing beyond BRCA1/2 and the Lynch syndrome genes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cancer Statistics Review
        SEER statistics 2015.
        (accessed February 25, 2016)
        • Alsop K.
        • Fereday S.
        • Meldrum C.
        • deFazio A.
        • Emmanuel C.
        • George J.
        • et al.
        BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group.
        J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012; 30: 2654-2663https://doi.org/10.1200/JCO.2011.39.8545
        • Pennington K.P.
        • Swisher E.M.
        Hereditary ovarian cancer: beyond the usual suspects.
        Gynecol. Oncol. 2012; 124: 347-353https://doi.org/10.1016/j.ygyno.2011.12.415
        • Malander S.
        • Rambech E.
        • Kristoffersson U.
        • Halvarsson B.
        • Ridderheim M.
        • Borg A.
        • et al.
        The contribution of the hereditary nonpolyposis colorectal cancer syndrome to the development of ovarian cancer.
        Gynecol. Oncol. 2006; 101: 238-243https://doi.org/10.1016/j.ygyno.2005.10.029
        • Kurman R.J.
        International Agency for Research on Cancer World Health Organization WHO Classification of Tumours of Female Reproductive Organs. 4th ed. International Agency for Research on Cancer, Lyon2014
        • Chui M.H.
        • Gilks C.B.
        • Cooper K.
        • Clarke B.A.
        Identifying Lynch syndrome in patients with ovarian carcinoma: the significance of tumor subtype.
        Adv. Anat. Pathol. 2013; 20: 378-386https://doi.org/10.1097/PAP.0b013e3182a92cf8
        • Ketabi Z.
        • Bartuma K.
        • Bernstein I.
        • Malander S.
        • Grönberg H.
        • Björck E.
        • et al.
        Ovarian cancer linked to Lynch syndrome typically presents as early-onset, non-serous epithelial tumors.
        Gynecol. Oncol. 2011; 121: 462-465https://doi.org/10.1016/j.ygyno.2011.02.010
        • Casadei S.
        • Norquist B.M.
        • Walsh T.
        • Stray S.
        • Mandell J.B.
        • Lee M.K.
        • et al.
        Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer.
        Cancer Res. 2011; 71: 2222-2229https://doi.org/10.1158/0008-5472.CAN-10-3958
        • Loveday C.
        • Turnbull C.
        • Ramsay E.
        • Hughes D.
        • Ruark E.
        • Frankum J.R.
        • et al.
        Germline mutations in RAD51D confer susceptibility to ovarian cancer.
        Nat. Genet. 2011; 43: 879-882https://doi.org/10.1038/ng.893
        • Loveday C.
        • Turnbull C.
        • Ruark E.
        • Xicola R.M.M.
        • Ramsay E.
        • Hughes D.
        • et al.
        Germline RAD51C mutations confer susceptibility to ovarian cancer.
        Nat. Genet. 2012; 44 (author reply 476): 475-476
        • Meindl A.
        • Hellebrand H.
        • Wiek C.
        • Erven V.
        • Wappenschmidt B.
        • Niederacher D.
        • et al.
        Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene.
        Nat. Genet. 2010; 42: 410-414https://doi.org/10.1038/ng.569
        • Rafnar T.
        • Gudbjartsson D.F.
        • Sulem P.
        • Jonasdottir A.
        • Sigurdsson A.
        • Jonasdottir A.
        • et al.
        Mutations in BRIP1 confer high risk of ovarian cancer.
        Nat. Genet. 2011; 43: 1104-1107https://doi.org/10.1038/ng.955
        • Ramus S.J.
        • Song H.
        • Dicks E.
        • Tyrer J.P.
        • Rosenthal A.N.
        • Intermaggio M.P.
        • et al.
        Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer.
        J. Natl. Cancer Inst. 2015; 107https://doi.org/10.1093/jnci/djv214
        • Walsh T.
        • Casadei S.
        • Lee M.K.
        • Pennil C.C.
        • Nord A.S.
        • Thornton A.M.
        • et al.
        Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 18032-18037https://doi.org/10.1073/pnas.1115052108
        • Lilyquist J.
        • LaDuca H.
        • Polley E.
        • Davis B.T.
        • Shimelis H.
        • Hu C.
        • et al.
        Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls.
        Gynecol. Oncol. 2017; 147: 375-380https://doi.org/10.1016/j.ygyno.2017.08.030
        • Genetic Testing for Ovarian Cancer
        SGO.
        (accessed February 25, 2016)
        • National Comprehensive Cancer Network
        (accessed February 25, 2016)
        • Randall L.M.
        • Pothuri B.
        • Swisher E.M.
        • Diaz J.P.
        • Buchanan A.
        • Witkop C.T.
        • et al.
        Multi-disciplinary summit on genetics services for women with gynecologic cancers: a Society of Gynecologic Oncology White Paper.
        Gynecol. Oncol. 2017; https://doi.org/10.1016/j.ygyno.2017.06.002
        • Next Generation Cancer Gene Panels Versus Gene by Gene Testing
        SGO.
        (accessed February 25, 2016)
        • Kent W.J.
        • Sugnet C.W.
        • Furey T.S.
        • Roskin K.M.
        • Pringle T.H.
        • Zahler A.M.
        • et al.
        The human genome browser at UCSC.
        Genome Res. 2002; 12 (Article published online before print in May 2002): 996-1006https://doi.org/10.1101/gr.229102
        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows–Wheeler transform.
        Bioinformatics. 2009; 25: 1754-1760https://doi.org/10.1093/bioinformatics/btp324
        • Van der Auwera G.A.
        • Carneiro M.O.
        • Hartl C.
        • Poplin R.
        • Del Angel G.
        • Levy-Moonshine A.
        • et al.
        From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
        Curr. Protoc. Bioinformatics. 2013; 43: 11.10.1-33https://doi.org/10.1002/0471250953.bi1110s43
        • Li H.
        • Handsaker B.
        • Wysoker A.
        • Fennell T.
        • Ruan J.
        • Homer N.
        • et al.
        The sequence alignment/map format and SAMtools.
        Bioinforma. Oxf. Engl. 2009; 25: 2078-2079https://doi.org/10.1093/bioinformatics/btp352
        • Richards C.S.
        • Bale S.
        • Bellissimo D.B.
        • Das S.
        • Grody W.W.
        • Hegde M.R.
        • et al.
        ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007.
        Genet. Med. Off. J. Am. Coll. Med. Genet. 2008; 10: 294-300https://doi.org/10.1097/GIM.0b013e31816b5cae
        • Richards S.
        • Aziz N.
        • Bale S.
        • Bick D.
        • Das S.
        • Gastier-Foster J.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med Off J Am Coll Med Genet. 2015; 17: 405-424https://doi.org/10.1038/gim.2015.30
      1. R Proj Stat Comput n.d. https://www.r-project.org/ (accessed January 11, 2017).

        • Norquist B.M.
        • Harrell M.I.
        • Brady M.F.
        • Walsh T.
        • Lee M.K.
        • Gulsuner S.
        • et al.
        Inherited mutations in women with ovarian carcinoma.
        JAMA Oncol. 2015; : 1-9https://doi.org/10.1001/jamaoncol.2015.5495
        • Pal T.
        • Permuth-Wey J.
        • Betts J.A.
        • Krischer J.P.
        • Fiorica J.
        • Arango H.
        • et al.
        BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases.
        Cancer. 2005; 104: 2807-2816https://doi.org/10.1002/cncr.21536
        • Zhang S.
        • Royer R.
        • Li S.
        • McLaughlin J.R.
        • Rosen B.
        • Risch H.A.
        • et al.
        Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer.
        Gynecol. Oncol. 2011; 121: 353-357https://doi.org/10.1016/j.ygyno.2011.01.020
        • Meijers-Heijboer H.
        • van den Ouweland A.
        • Klijn J.
        • Wasielewski M.
        • de Snoo A.
        • Oldenburg R.
        • et al.
        Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations.
        Nat. Genet. 2002; 31: 55-59https://doi.org/10.1038/ng879
        • Broeks A.
        • Urbanus J.H.
        • Floore A.N.
        • Dahler E.C.
        • Klijn J.G.
        • Rutgers E.J.
        • et al.
        ATM-heterozygous germline mutations contribute to breast cancer-susceptibility.
        Am. J. Hum. Genet. 2000; 66: 494-500
        • Song H.
        • Dicks E.
        • Ramus S.J.
        • Tyrer J.P.
        • Intermaggio M.P.
        • Hayward J.
        • et al.
        Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population.
        J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015; 33: 2901-2907https://doi.org/10.1200/JCO.2015.61.2408
        • Kotsopoulos J.
        • Sopik V.
        • Rosen B.
        • Fan I.
        • McLaughlin J.R.
        • Risch H.
        • et al.
        Frequency of germline PALB2 mutations among women with epithelial ovarian cancer.
        Familial Cancer. 2017; 16: 29-34https://doi.org/10.1007/s10689-016-9919-z
        • Bernards S.S.
        • Norquist B.M.
        • Harrell M.I.
        • Agnew K.J.
        • Lee M.K.
        • Walsh T.
        • et al.
        Genetic characterization of early onset ovarian carcinoma.
        Gynecol. Oncol. 2016; 140: 221-225https://doi.org/10.1016/j.ygyno.2015.12.017
        • Lee K.
        • Tavassoli F.
        Prat. Tumors of the ovary and peritoneum.
        in: World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of the Breast and Female Genital Organs. IARC Press, Lyon, France2003
        • Song H.
        • Cicek M.S.
        • Dicks E.
        • Harrington P.
        • Ramus S.J.
        • Cunningham J.M.
        • et al.
        The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population.
        Hum. Mol. Genet. 2014; 23: 4703-4709https://doi.org/10.1093/hmg/ddu172
        • Ryan N.A.J.
        • Evans D.G.
        • Green K.
        • Crosbie E.J.
        Pathological features and clinical behavior of Lynch syndrome-associated ovarian cancer.
        Gynecol. Oncol. 2017; https://doi.org/10.1016/j.ygyno.2017.01.005
        • Stratton J.F.
        • Thompson D.
        • Bobrow L.
        • Dalal N.
        • Gore M.
        • Bishop D.T.
        • et al.
        The genetic epidemiology of early-onset epithelial ovarian cancer: a population-based study.
        Am. J. Hum. Genet. 1999; 65: 1725-1732https://doi.org/10.1086/302671
        • Hooker G.W.
        • Clemens K.R.
        • Quillin J.
        • Vogel Postula K.J.
        • Summerour P.
        • Nagy R.
        • et al.
        Cancer genetic counseling and testing in an era of rapid change.
        J. Genet. Couns. 2017; 26: 1244-1253https://doi.org/10.1007/s10897-017-0099-2