Phase II study of single-agent cabozantinib in patients with recurrent clear cell ovarian, primary peritoneal or fallopian tube cancer (NRG-GY001)


      • NRG-GY001 was a phase II study of cabozantinib in clear cell ovarian cancer.
      • No objective responses were seen but 3 of 13 patients had PFS ≥6 months.
      • Grade ≥3 AEs were thromboembolism, nausea, vomiting, fatigue, dyspnea, dehydration



      To evaluate the efficacy and tolerability of cabozantinib in recurrent clear cell ovarian, primary peritoneal or fallopian tube cancer.


      Patients with recurrent ovarian, fallopian or primary peritoneal tumors with at least 50% clear cell histomorphology, measurable disease, one or two prior regimens and ECOG performance status 0–2 received cabozantinib 60 mg orally once daily continuously, in 4-week cycles until disease progression or unacceptable toxicity. Primary endpoints were progression-free survival (PFS) at six months and complete or partial tumor response (as assessed by RECIST 1.1). Secondary endpoints included toxicity, PFS, and overall survival (OS).


      Over 19 months, 13 patients were accrued. Fifty-four percent of patients were ≥60 years of age. Performance statuses of 0 and 1 comprised 8 and 5 patients. No objective tumor responses were seen. Three (23% [95% CI: 5%, 54%]) of 13 patients had PFS ≥6 months, including one patient who received cabozantinib for 23 cycles and was still on treatment as of the data cut-off date. Median PFS and OS were 3.6 and 8.1 months, respectively. There was one patient with a grade 5 event: a thromboembolic event considered possibly related to study therapy; patient's cause of death was determined to be due to disease and protocol treatment. Four other patients had thromboembolic events (two grade 3 and one each grade 1 and grade 2). Other grade 3 or higher events reported in two or more patients were nausea, vomiting, fatigue, dyspnea, and dehydration.


      Cabozantinib demonstrated minimal activity in the second- and third-line treatments of clear cell ovarian, fallopian tube or primary peritoneal carcinoma.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • del Carmen M.G.
        • Birrer M.
        • Schorge J.O.
        Clear cell carcinoma of the ovary: a review of the literature.
        Gynecol. Oncol. 2012; 126: 481-490
        • Groen R.S.
        • Gershenson D.M.
        • Fader A.N.
        Updates and emerging therapies for rare epithelial ovarian cancers: one size no longer fits all.
        Gynecol. Oncol. 2015; 136: 373-383
        • Crotzer D.R.
        • Sun C.C.
        • Coleman R.L.
        • Wolf J.K.
        • Levenback C.F.
        • Gershenson D.M.
        Lack of effective systemic therapy for recurrent clear cell carcinoma of the ovary.
        Gynecol. Oncol. 2007; 105: 404-408
        • Itamochi H.
        • Kigawa J.
        • Akeshima R.
        • Sato S.
        • Kamazawa S.
        • Takahashi M.
        • et al.
        Mechanisms of cisplatin resistance in clear cell carcinoma of the ovary.
        Oncology. 2002; 62: 349-353
        • Itamochi H.
        • Kigawa J.
        • Sugiyama T.
        • Kikuchi Y.
        • Suzuki M.
        • Terakawa N.
        Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary.
        Obstet. Gynecol. 2002; 100: 281-287
        • Itamochi H.
        • Kigawa J.
        • Terakawa N.
        Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma.
        Cancer Sci. 2008; 99: 653-658
        • Kajihara H.
        • Yamada Y.
        • Kanayama S.
        • Furukawa N.
        • Noguchi T.
        • Haruta S.
        • et al.
        Clear cell carcinoma of the ovary: potential pathogenic mechanisms (review).
        Oncol. Rep. 2010; 23: 1193-1203
        • Schaner M.E.
        • Ross D.T.
        • Ciaravino G.
        • Sorlie T.
        • Troyanskaya O.
        • Diehn M.
        • et al.
        Gene expression patterns in ovarian carcinomas.
        Mol. Biol. Cell. 2003; 14: 4376-4386
        • Yamamoto S.
        • Tsuda H.
        • Miyai K.
        • Takano M.
        • Tamai S.
        • Matsubara O.
        Gene amplification and protein overexpression of MET are common events in ovarian clear-cell adenocarcinoma: their roles in tumor progression and prognostication of the patient.
        Mod. Pathol. 2011; 24: 1146-1155
        • Yamashita Y.
        • Akatsuka S.
        • Shinjo K.
        • Yatabe Y.
        • Kobayashi H.
        • Seko H.
        • Kajiyama H.
        • Kikkawa F.
        • Takahashi T.
        • Toyokuni S.
        Met is the most frequently amplified gene in endometriosis-associated ovarian clear cell adenocarcinoma and correlates with worsened prognosis.
        PLoS One. 2013; 8e57724
        • Anglesio M.S.
        • George J.
        • Kulbe H.
        • Friedlander M.
        • Rischin D.
        • Lemech C.
        • et al.
        IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer.
        Clin. Cancer Res. 2011; 17: 2538-2548
        • Eckerich C.
        • Zapf S.
        • Fillbrandt R.
        • Loges S.
        • Westphal M.
        • Lamszus K.
        Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration.
        Int. J. Cancer. 2007; 121: 276-283
        • Pennacchietti S.
        • Michieli P.
        • Galluzzo M.
        • Mazzone M.
        • Giordano S.
        • Comoglio P.M.
        Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene.
        Cancer Cell. 2003; 3: 347-361
        • Yamamoto S.
        • Tsuda H.
        • Miyai K.
        • Takano M.
        • Tamai S.
        • Matsubara O.
        Accumulative copy number increase of MET drives tumor development and histological progression in a subset of ovarian clear-cell adenocarcinomas.
        Mod. Pathol. 2011; 25: 122-130
        • Yakes F.M.
        • Chen J.
        • Tan J.
        • Yamaguchi K.
        • Shi Y.
        • Yu P.
        • et al.
        Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.
        Mol. Cancer Ther. 2011; 10: 2298-2308
        • Sennino B.
        • Ishiguro-Oonuma T.
        • Wei Y.
        • Naylor R.M.
        • Williamson C.W.
        • Bhagwandin V.
        • et al.
        Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors.
        Cancer Discov. 2012; 2: 270-287
        • Zhang S.
        • Zhau H.E.
        • Osunkoya A.O.
        • Iqbal S.
        • Yang X.
        • Fan S.
        • et al.
        Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells.
        Mol. Cancer. 2010; 9: 9
        • You W.K.
        • Sennino B.
        • Williamson C.W.
        • Falcon B.
        • Hashizume H.
        • Yao L.C.
        • et al.
        VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer.
        Cancer Res. 2011; 71: 4758-4768
        • Rankin E.B.
        • Fuh K.C.
        • Castellini L.
        • Viswanathan K.
        • Finger E.C.
        • Diep A.N.
        • et al.
        Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET.
        Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 13373-13378
        • Alifrangis C.
        • Thornton A.
        • Fotopoulou C.
        • Krell J.
        • Gabra H.
        Response to sunitinib (sutent) in chemotherapy refractory clear cell ovarian cancer.
        Gynecol Oncol Rep. 2016; 18: 42-44
        • Rauh-Hain J.A.
        • Penson R.T.
        Potential benefit of sunitinib in recurrent and refractory ovarian clear cell adenocarcinoma.
        Int. J. Gynecol. Cancer. 2008; 18: 934-936
        • Vergote I.B.
        • Smith D.C.
        • Berger R.
        • Kurzrock R.
        • Vogelzang N.J.
        • Sella A.
        • Wheler J.
        • Lee Y.
        • Foster P.G.
        • Weitzman R.
        • Buckanovich R.J.
        A phase 2 randomised discontinuation trial of cabozantinib in patients with ovarian carcinoma.
        Eur. J. Cancer. 2017; 1: 229-236
        • Abou-Alfa G.K.
        • Meyer T.
        • Cheng A.
        • El-Khoueiry A.B.
        • Rimassa L.
        • Ryoo B.
        • Cicin I.
        • Merle P.
        • Park J.
        • Blanc J.
        • Bolondi L.
        • Klümpen H.J.
        • Chan S.L.
        • Dadduzio V.
        • Hessel C.
        • Borgman-Hagey A.E.
        • Schwab G.
        • Kelley R.K.
        Cabozantinib (C) versus placebo (P) in patients (pts) with advanced hepatocellular carcinoma (HCC) who have received prior sorafenib: results from the randomized phase III CELESTIAL trial.
        in: ASCO GI Cancer San Francisco, CA. 2018
        • Hart C.D.
        • De Boer R.H.
        Profile of cabozantinib and its potential in the treatment of advanced medullary thyroid cancer.
        Onco Targets Ther. 2013; 6: 1-7
        • Chan J.
        • Brady W.E.
        • Brown J.
        • Shahin M.S.
        • Rose P.G.
        • Kim J.H.
        • et al.
        A phase II evaluation of sunitinib (SU11248) in the treatment of persistent or recurrent clear cell ovarian carcinoma: An NRG oncology/gynecologic oncology group (GOG) study.
        in: Society of Gynecologic Oncology Meeting 2015. Chicago. 2015
        • Kuo K.T.
        • Mao T.L.
        • Jones S.
        • Veras E.
        • Ayhan A.
        • Wang T.L.
        • et al.
        Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma.
        Am. J. Pathol. 2009; 174: 1597-1601
        • Wiegand K.C.
        • Shah S.P.
        • Al-Agha O.M.
        • Zhao Y.
        • Tse K.
        • Zeng T.
        • et al.
        ARID1A mutations in endometriosis-associated ovarian carcinomas.
        N. Engl. J. Med. 2010; 363: 1532-1543
        • Ji F.
        • Liu X.
        • Wu Y.
        • Fang X.
        • Huang G.
        Overexpression of PI3K p110alpha contributes to acquired resistance to MET inhibitor, in MET-amplified SNU-5 gastric xenografts.
        Drug Des Devel Ther. 2015; 9: 5697-5704
        • Qi J.
        • McTigue M.A.
        • Rogers A.
        • Lifshits E.
        • Christensen J.G.
        • Janne P.A.
        • et al.
        Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors.
        Cancer Res. 2011; 71: 1081-1091
        • Choueiri T.K.
        • Escudier B.
        • Powles T.
        • Mainwaring P.N.
        • Rini B.I.
        • Donskov F.
        • et al.
        Cabozantinib versus everolimus in advanced renal-cell carcinoma.
        N. Engl. J. Med. 2015; 373: 1814-1823
        • Duska L.R.
        • Garrett L.
        • Henretta M.
        • Ferriss J.S.
        • Lee L.
        • Horowitz N.
        When ‘never-events’ occur despite adherence to clinical guidelines: the case of venous thromboembolism in clear cell cancer of the ovary compared with other epithelial histologic subtypes.
        Gynecol. Oncol. 2009; 116: 374-377