Advertisement
Research Article| Volume 148, ISSUE 2, P317-328, February 2018

Download started.

Ok

Association between Epstein-Barr virus (EBV) and cervical carcinoma: A meta-analysis

Published:October 09, 2017DOI:https://doi.org/10.1016/j.ygyno.2017.10.005

      Highlights

      • Cervical carcinoma was found four times more often in EBV positive patients.
      • The pooled prevalence of EBV is positively associated with cervical lesion grade.
      • EBV/HPV co-infection increases the risk of cervical cancer.

      Abstract

      Objectives

      Human papillomavirus (HPV) has been implicated as a major factor in cervical carcinogenesis. However, many pieces of evidence gathered over the last two decades suggest Epstein-Barr virus (EBV) plays a secondary role in this process. The purpose of the present meta-analysis was to determine whether the presence of EBV infection increases the risk of cervical carcinoma.

      Methods

      Based on 25 articles, the analysis yielded a 33.44% overall pooled prevalence of EBV.

      Results

      The pooled prevalence was higher in patients with carcinoma (43.63%) than in healthy patients (19.0%) or patients with cervical intraepithelial neoplasia 1 (CIN1) (27.34%) or CIN2/3 (34.67%). Co-infection with EBV and HPV displayed a similar pattern. EBV infection was significantly and positively associated with lesion grade in cervical epithelia and was more prevalent in malignant lesions. Moreover, cervical carcinoma occurred four times as often among EBV positive women as in women without EBV infection (OR = 4.01 [1.87–8.58]; p < 0.001).

      Conclusions

      The existence of EBV(+)HPV(−) carcinomas, the confirmed expression of latent oncoproteins (EBNA1, EBNA2, LMP1) and EBERs in tumor cells, and the association of EBV with the integration of high-risk-HPV DNA in malignant specimens point to EBV as a co-factor (so far underestimated) in the genesis and/or progression of cervical carcinoma. However, further studies are necessary before the link between EBV and cervical carcinoma can be established.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Torre L.A.
        • Bray F.
        • Siegel R.L.
        • Ferlay J.
        • Lortet-Tieulent J.
        • Jemal A.
        Global cancer statistics, 2012.
        CA Cancer J. Clin. 2015; 65: 87-108
        • Morales-Sánchez A.
        • Fuentes-Pananá E.M.
        Human viruses and cancer.
        Viruses. 2014; 6: 4047-4079
        • Khenchouche A.
        • Sadouki N.
        • Boudriche A.
        • Houali K.
        • Graba A.
        • Ooka T.
        • Bouguermouh A.
        Human papillomavirus and Epstein-Barr virus co-infection in cervical carcinoma in Algerian women.
        Virol. J. 2013; 10
        • Thompson S.
        • Messick T.
        • Schultz D.C.
        • Reichman M.
        • Lieberman P.M.
        Development of a high-throughput screen for inhibitors of Epstein-Barr virus EBNA1.
        J. Biomol. Screen. 2010; 15: 1107-1115
        • Sasagawa T.
        • Shimakage M.
        • Nakamura M.
        • Sakaike J.
        • Ishikawa H.
        • Inoue M.
        Epstein-Barr virus (EBV) genes expression in cervical intraepithelial neoplasia and invasive cervical cancer: a comparative study with human papillomavirus (HPV) infection.
        Hum. Pathol. 2000; 31: 318-326
        • Turner M.J.
        • White J.O.
        • Soutter W.P.
        Human seminal plasma inhibits the lymphocyte response to infection with Epstein-Barr virus.
        Gynecol. Oncol. 1990; 37: 60-65
        • Zhang W.
        • Jin S.
        • Li J.
        • Liang X.
        • Ming L.
        • Wang X.
        • Shang M.
        • Wu A.
        • Sun J.
        • Liu Z.
        The infection of ebv for cervical epithelium-a new causitive agent in the development of cervical carcinomas?.
        Chin. J. Cancer Res. 1992; 4: 23-29
        • Rodrigues F.R.
        • Miranda N.L.
        • Da Fonseca E.C.
        • Pires A.R.C.
        • Dias E.P.
        Investigation of the LMP1 EBV and co-infection by HPV in genital lesions of patients infected or not by HIV.
        J. Bras. Patol. Med. Lab. 2010; 46: 415-420
        • Aromseree S.
        • Pientong C.
        • Swangphon P.
        • Chaiwongkot A.
        • Patarapadungkit N.
        • Kleebkaow P.
        • Tungsiriwattana T.
        • Kongyingyoes B.
        • Vendrig T.
        • Middeldorp J.M.
        • Ekalaksananan T.
        Possible contributing role of Epstein-Barr virus (EBV) as a cofactor in human papillomavirus (HPV)-associated cervical carcinogenesis.
        J. Clin. Virol. 2015; 73: 70-76
        • Kahla S.
        • Oueslati S.
        • Achour M.
        • Kochbati L.
        • Chanoufi M.B.
        • Maalej M.
        • Oueslati R.
        Correlation between ebv co-infection and HPV16 genome integrity in Tunisian cervical cancer patients.
        Braz. J. Microbiol. 2012; 43: 744-753
        • Silver M.I.
        • Paul P.
        • Sowjanya P.
        • Ramakrishna G.
        • Vedantham H.
        • Kalpana B.
        • Shah K.V.
        • Gravitt P.E.
        Shedding of Epstein-Barr virus and cytomegalovirus from the genital tract of women in a periurban community in Andhra Pradesh, India.
        J. Clin. Microbiol. 2011; 49: 2435-2439
        • Marinho-Dias J.
        • Ribeiro J.
        • Monteiro P.
        • Loureiro J.
        • Baldaque I.
        • Medeiros R.
        • Sousa H.
        Characterization of cytomegalovirus and epstein-barr virus infection in cervical lesions in Portugal.
        J. Med. Virol. 2013; 85: 1409-1413
        • Harris R.
        • Bradburn M.
        • Deeks J.
        • Harbord R.
        • Altman D.
        • Sterne J.
        Metan: fixed- and random-effects meta-analysis.
        Stata J. 2008; 8: 3-28
        • Newcombe R.G.
        Two-sided confidence intervals for the single proportion: comparison of seven methods.
        Stat. Med. 1998; 17: 857-872
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control. Clin. Trials. 1986; 7: 177-188
        • Szostek S.
        • Zawilinska B.
        • Kopec J.
        • Kosz-Vnenchak M.
        Herpesviruses as possible cofactors in HPV-16-related oncogenesis.
        Acta Biochim. Pol. 2009; 56: 337-342
        • Szkaradkiewicz A.
        • Wal M.
        • Kuch A.
        • Pieta P.
        Human papillomavirus (HPV) and Epstein-Barr virus (EBV) cervical infections in women with normal and abnormal cytology.
        Pol. J. Microbiol. 2004; 53: 95-99
        • Lanham S.
        • Herbert A.
        • Basarab A.
        • Watt P.
        Detection of cervical infections in colposcopy clinic patients.
        J. Clin. Microbiol. 2001; 39: 2946-2950
        • Ammatuna P.
        • Giovannelli L.
        • Giambelluca D.
        • Mancuso S.
        • Rubino E.
        • Colletti P.
        • Mazzola G.
        • Belfiore P.
        • Lima R.
        Presence of human papillomavirus and Epstein-Barr virus in the cervix of women infected with the human immunodeficiency virus.
        J. Med. Virol. 2000; 62: 410-415
        • O'Leary J.J.
        • Landers R.J.
        • Crowley M.
        • Healy I.
        • Kealy W.F.
        • Hogan J.
        • Cullinane C.
        • Kelehan P.
        • Doyle C.T.
        Genotypic mapping of HPV and assessment of EBV prevalence in endocervical lesions.
        J. Clin. Pathol. 1997; 50: 904-910
        • Koffa M.
        • Koumantakis E.
        • Ergazaki M.
        • Tsatsanis C.
        • Spandidos D.A.
        Association of herpesvirus infection with the development of genital cancer.
        Int. J. Cancer. 1995; 63: 58-62
        • Dillner J.
        • Lenner P.
        • Lehtinen M.
        • Eklund C.
        • Heino P.
        • Wiklund F.
        • Hallmans G.
        • Stendahl U.
        A population-based seroepidemiological study of cervical cancer.
        Cancer Res. 1994; 54: 134-141
        • Hilton D.A.
        • Brown L.J.
        • Pringle J.H.
        • Nandha H.
        Absence of Epstein-Barr virus in carcinoma of the cervix.
        Cancer. 1993; 72: 1946-1948
        • Landers R.J.
        • O'Leary J.J.
        • Crowley M.
        • Healy I.
        • Annis P.
        • Burke L.
        • O'Brien D.
        • Hogan J.
        • Kealy W.F.
        • Lewis F.A.
        Epstein-Barr virus in normal, pre-malignant, and malignant lesions of the uterine cervix.
        J. Clin. Pathol. 1993; 46: 931-935
        • Prayitno A.
        Cervical cancer with human papilloma virus and Epstein Barr virus positive.
        J Carcinog. 2006; 5: 13
        • Seo S.S.
        • Kim W.H.
        • Song Y.S.
        • Kim S.H.
        • Kim J.W.
        • Park N.H.
        • Kang S.B.
        • Lee H.P.
        Epstein-Barr virus plays little role in cervical carcinogenesis in Korean women.
        Int. J. Gynecol. Cancer. 2005; 15: 312-318
        • Shimakage M.
        • Sasagawa T.
        Detection of Epstein-Barr virus-determined nuclear antigen-2 mRNA by in situ hybridization.
        J. Virol. Methods. 2001; 93: 23-32
        • Shoji Y.
        • Saegusa M.
        • Takano Y.
        • Hashimura M.
        • Okayasu I.
        Detection of the Epstein-Barr virus genome in cervical neoplasia is closely related to the degree of infiltrating lymphoid cells: a polymerase chain reaction and in situ hybridization approach.
        Pathol. Int. 1997; 47: 507-511
        • Zhang W.
        • Jin S.
        • Liu B.
        • Liang X.
        • Ming L.
        • Wang X.
        • Shang M.
        • Jianheng S.
        • Xixia W.
        • Wenhua Z.
        • Airu W.
        • Chiming L.
        • Junyao L.
        The cervix multi-viruses infection and the development of cervical carcinomas.
        Chin. J. Cancer Res. 1994; 6: 241-247
        • Se Thoe S.Y.
        • Wong K.K.
        • Pathmanathan R.
        • Sam C.K.
        • Cheng H.M.
        • Prasad U.
        Elevated secretory IgA antibodies to Epstein-Barr virus (EBV) and presence of EBV DNA and EBV receptors in patients with cervical carcinoma.
        Gynecol. Oncol. 1993; 50: 168-172
        • McCormick T.M.
        • Canedo N.H.
        • Furtado Y.L.
        • Silveira F.A.
        • de Lima R.J.
        • Rosman A.D.
        • Almeida Filho G.L.
        • Carvalho M.A.G.
        Association between human papillomavirus and Epstein - Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: a transversal study.
        Diagn. Pathol. 2015; 10: 59
        • Santos N.B.
        • Villanova F.E.
        • Andrade P.M.
        • Ribalta J.
        • Focchi J.
        • Otsuka A.Y.
        • Dale Silva I.
        Epstein-Barr virus detection in invasive and pre-invasive lesions of the uterine cervix.
        Oncol. Rep. 2009; 21: 403-405
        • Lattario F.
        • Furtado Y.L.
        • Fonseca R.
        • Silveira F.A.
        • do Val I.C.
        • Almeida G.
        • Carvalho M.G.
        Analysis of human papillomavirus and Epstein-Barr virus infection and aberrant death-associated protein kinase methylation in high-grade squamous intraepithelial lesions.
        Int. J. Gynecol. Cancer. 2008; 18: 785-789
        • Young L.S.
        • Dawson C.W.
        • Brown K.W.
        • Rickinson A.B.
        Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes.
        Int. J. Cancer. 1989; 43: 786-794
        • Sixbey J.W.
        • Vesterinen E.H.
        • Nedrud J.G.
        • Raab-Traub N.
        • Walton L.A.
        • Pagano J.S.
        Replication of Epstein-Barr virus in human epithelial cells infected in vitro.
        Nature. 1983; 306: 480-483
        • Sixbey J.W.
        • Lemon S.M.
        • Pagano J.S.
        A second site for Epstein-Barr virus shedding: the uterine cervix.
        Lancet. 1986; 2: 1122-1124
        • Frappier L.
        Viral disruption of promyelocytic leukemia (PML) nuclear bodies by hijacking host PML regulators.
        Virulence. 2011; 2: 58-62
        • Tsuchiya S.
        Diagnosis of Epstein-Barr virus-associated diseases.
        Crit. Rev. Oncol. Hematol. 2002; 44: 227-238
        • Hou Y.M.
        • Dong J.
        • Liu M.Y.
        • Yu S.
        Expression of Epstein-Barr virus-induced gene 3 in cervical cancer: association with clinicopathological parameters and prognosis.
        Oncol. Lett. 2016; 11: 330-334
        • Zeng J.C.
        • Zhang Z.
        • Li T.Y.
        • Liang Y.F.
        • Wang H.M.
        • Bao J.J.
        • Zhang J.A.
        • Wang W.D.
        • Xiang W.Y.
        • Kong B.
        • Wang Z.Y.
        • Wu B.H.
        • Chen X.D.
        • He L.
        • Zhang S.
        • Wang C.Y.
        • Xu J.F.
        Assessing the role of IL-35 in colorectal cancer progression and prognosis.
        Int. J. Clin. Exp. Pathol. 2013; 6: 1806-1816
        • Long J.
        • Zhang X.
        • Wen M.
        • Kong Q.
        • Lv Z.
        • An Y.
        • Wei X.Q.
        IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells.
        Biochem. Biophys. Res. Commun. 2013; 430: 364-369
        • Iezzoni J.C.
        • Gaffey M.J.
        • Weiss L.M.
        The role of Epstein-Barr virus in lymphoepithelioma-like carcinomas.
        Am. J. Clin. Pathol. 1995; 103: 308-315
        • Ferlay J.
        • Shin H.R.
        • Bray F.
        • Forman D.
        • Mathers C.
        • Parkin D.M.
        Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.
        Int. J. Cancer. 2010; 127: 2893-2917
        • Woodman C.B.
        • Collins S.I.
        • Young L.S.
        The natural history of cervical HPV infection: unresolved issues.
        Nat. Rev. Cancer. 2007; 7: 11-22
        • Groves I.J.
        • Coleman N.
        Pathogenesis of human papillomavirus-associated mucosal disease.
        J. Pathol. 2015; 235: 527-538
        • Woodworth C.D.
        • McMullin E.
        • Iglesias M.
        • Plowman G.D.
        Interleukin 1 alpha and tumor necrosis factor alpha stimulate autocrine amphiregulin expression and proliferation of human papillomavirus-immortalized and carcinoma-derived cervical epithelial cells.
        Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 2840-2844
        • zur Hausen H.
        • Gissmann L.
        • Schlehofer J.R.
        Viruses in the etiology of human genital cancer.
        Prog. Med. Virol. 1984; 30: 170-186
        • zur Hausen H.
        Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis.
        J. Natl. Cancer Inst. 2000; 92: 690-698
        • Missaoui N.
        • Hmissa S.
        • Trabelsi A.
        • Frappart L.
        • Mokni M.
        • Korbi S.
        Cervix cancer in Tunisia: clinical and pathological study.
        Asian Pac. J. Cancer Prev. 2010; 11: 235-238
        • Ostör A.G.
        Natural history of cervical intraepithelial neoplasia: a critical review.
        Int. J. Gynecol. Pathol. 1993; 12: 186-192
        • Koeneman M.M.
        • Kruitwagen R.F.
        • Nijman H.W.
        • Slangen B.F.
        • Van Gorp T.
        • Kruse A.J.
        Natural history of high-grade cervical intraepithelial neoplasia: a review of prognostic biomarkers.
        Expert. Rev. Mol. Diagn. 2015; 15: 527-546