Advertisement

Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls

Published:September 07, 2017DOI:https://doi.org/10.1016/j.ygyno.2017.08.030

      Highlights

      • Ovarian cancer risks for mutations in hereditary cancer panel genes were assessed.
      • Mutations by gene from 7768 ovarian cancer cases and reference controls were compared.
      • BRCA1, BRCA2, BRIP1, MSH2, MSH6, RAD51C, and RAD51D were confirmed as high-risk genes.
      • ATM was identified as a moderate risk ovarian cancer gene.
      • The results will inform clinical management of women with mutations these genes.

      Abstract

      Objectives

      Given the lack of adequate screening modalities, knowledge of ovarian cancer risks for carriers of pathogenic alterations in predisposition genes is important for decisions about risk-reduction by salpingo-oophorectomy. We sought to determine which genes assayed on multi-gene panels are associated with ovarian cancer, the magnitude of the associations, and for which clinically meaningful associations could be ruled out.

      Methods

      7768 adult ovarian cancer cases of European ancestry referred to a single clinical testing laboratory underwent multi-gene panel testing for detection of pathogenic alterations in known or suspected ovarian cancer susceptibility genes. A targeted capture approach was employed to assay each of 19 genes for the presence of pathogenic or likely pathogenic alterations. Mutation frequencies in ovarian cancer cases were compared to mutation frequencies in individuals from the Exome Aggregation Consortium (ExAC). Analyses stratified by family and personal history of other cancers and age at diagnosis were also performed.

      Results

      Significant associations (p < 0.001) were identified between alterations in 11 genes and ovarian cancer, with eight of these displaying ≥5-fold increased risk (BRCA1, BRCA2, BRIP1, MSH2, MSH6, RAD51C, RAD51D). Relative risks of ovarian cancer greater than two-fold were also observed for ATM, but could reliably be ruled out for RAD50 and CHEK2.

      Conclusions

      These results will inform clinical management of women found to carry pathogenic alterations in genes tested on multi-gene panels. The knowledge that some genes are not associated with OC can reduce concerns of women found to carry pathogenic alterations in those genes.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J. Clin. 2016; 66: 7-30
        • Domchek S.M.
        • Friebel T.M.
        • Neuhausen S.L.
        • Wagner T.
        • Evans G.
        • Isaacs C.
        • et al.
        Mortality after bilateral salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers: a prospective cohort study.
        Lancet Oncol. 2006; 7: 223-229
        • Crawford B.
        • Adams S.B.
        • Sittler T.
        • van den Akker J.
        • Chan S.
        • Leitner O.
        • et al.
        Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients.
        Breast Cancer Res. Treat. 2017;
        • Minion L.E.
        • Dolinsky J.S.
        • Chase D.M.
        • Dunlop C.L.
        • Chao E.C.
        • Monk B.J.
        Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2.
        Gynecol. Oncol. 2015; 137: 86-92
        • Susswein L.R.
        • Marshall M.L.
        • Nusbaum R.
        • Vogel Postula K.J.
        • Weissman S.M.
        • Yackowski L.
        • et al.
        Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing.
        Gend. Med. 2016; 18: 823-832
        • Desmond A.
        • Kurian A.W.
        • Gabree M.
        • Mills M.A.
        • Anderson M.J.
        • Kobayashi Y.
        • et al.
        Clinical action ability of multigene panel testing for hereditary breast and ovarian cancer risk assessment.
        JAMA Oncol. 2015; 1: 943-951
        • Alsop K.
        • Fereday S.
        • Meldrum C.
        • deFazio A.
        • Emmanuel C.
        • George J.
        • et al.
        BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group.
        J. Clin. Oncol. 2012; 30: 2654-2663
        • Zhang S.
        • Royer R.
        • Li S.
        • McLaughlin J.R.
        • Rosen B.
        • Risch H.A.
        • et al.
        Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer.
        Gynecol. Oncol. 2011; 121: 353-357
        • Song H.
        • Cicek M.S.
        • Dicks E.
        • Harrington P.
        • Ramus S.J.
        • Cunningham J.M.
        • et al.
        The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population.
        Hum. Mol. Genet. 2014; 23: 4703-4709
        • Walsh T.
        • Casadei S.
        • Lee M.K.
        • Pennil C.C.
        • Nord A.S.
        • Thornton A.M.
        • et al.
        Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 18032-18037
        • Ramus S.J.
        • Harrington P.A.
        • Pye C.
        • DiCioccio R.A.
        • Cox M.J.
        • Garlinghouse-Jones K.
        • et al.
        Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer.
        Hum. Mutat. 2007; 28: 1207-1215
        • Norquist B.M.
        • Harrell M.I.
        • Brady M.F.
        • Walsh T.
        • Lee M.K.
        • Gulsuner S.
        • et al.
        Inherited mutations in women with ovarian carcinoma.
        JAMA Oncol. 2016; 2: 482-490
        • Ramus S.J.
        • Song H.
        • Dicks E.
        • Tyrer J.P.
        • Rosenthal A.N.
        • Intermaggio M.P.
        • et al.
        Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer.
        J. Natl. Cancer Inst. 2015; 107
        • Loveday C.
        • Turnbull C.
        • Ramsay E.
        • Hughes D.
        • Ruark E.
        • Frankum J.R.
        • et al.
        Germline mutations in RAD51D confer susceptibility to ovarian cancer.
        Nat. Genet. 2011; 43: 879-882
        • Loveday C.
        • Turnbull C.
        • Ruark E.
        • Xicola R.M.
        • Ramsay E.
        • Hughes D.
        • et al.
        Germline RAD51C mutations confer susceptibility to ovarian cancer.
        Nat. Genet. 2012; 44 (author reply 6): 475-476
        • Song H.
        • Dicks E.
        • Ramus S.J.
        • Tyrer J.P.
        • Intermaggio M.P.
        • Hayward J.
        • et al.
        Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population.
        J. Clin. Oncol. 2015; 33: 2901-2907
        • Bonadona V.
        • Bonaiti B.
        • Olschwang S.
        • Grandjouan S.
        • Huiart L.
        • Longy M.
        • et al.
        Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome.
        JAMA. 2011; 305: 2304-2310
        • Baglietto L.
        • Lindor N.M.
        • Dowty J.G.
        • White D.M.
        • Wagner A.
        • Gomez Garcia E.B.
        • et al.
        Risks of Lynch syndrome cancers for MSH6 mutation carriers.
        J. Natl. Cancer Inst. 2010; 102: 193-201
        • LaDuca H.
        • Stuenkel A.J.
        • Dolinsky J.S.
        • Keiles S.
        • Tandy S.
        • Pesaran T.
        • et al.
        Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients.
        Genet. Med. 2014; 16: 830-837
        • Couch F.J.
        • Shimelis H.
        • Hu C.
        • Hart S.N.
        • Polley E.C.
        • Na J.
        • et al.
        Associations between cancer predisposition testing panel genes and breast cancer.
        JAMA Oncol. 2017; (Epub ahead of print)
        • Pritchard C.C.
        • Mateo J.
        • Walsh M.F.
        • De Sarkar N.
        • Abida W.
        • Beltran H.
        • et al.
        Inherited DNA-repair gene mutations in men with metastatic prostate cancer.
        N. Engl. J. Med. 2016; 375: 443-453
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • Samocha K.E.
        • Banks E.
        • Fennell T.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Landrum M.J.
        • Lee J.M.
        • Benson M.
        • Brown G.
        • Chao C.
        • Chitipiralla S.
        • et al.
        ClinVar: public archive of interpretations of clinically relevant variants.
        Nucleic Acids Res. 2016; 44: D862-8
        • Rosner B.
        Fundamentals of Biostatistics.
        5th ed. Duxbury Press, 2000
        • Dobson A.J.
        • Kuulasmaa K.
        • Eberle E.
        • Scherer J.
        Confidence intervals for weighted sums of Poisson parameters.
        Stat. Med. 1991; 10: 457-462
        • StataCorp
        Stata Statistical Software: Release 14.
        StataCorp LP, College Station, TX2015
        • Chen S.
        • Parmigiani G.
        Meta-analysis of BRCA1 and BRCA2 penetrance.
        J. Clin. Oncol. 2007; 25: 1329-1333
        • Mavaddat N.
        • Peock S.
        • Frost D.
        • Ellis S.
        • Platte R.
        • Fineberg E.
        • et al.
        Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE.
        J. Natl. Cancer Inst. 2013; 105: 812-822
        • Espenschied C.R.
        • LaDuca H.
        • Li S.
        • McFarland R.
        • Gau C.L.
        • Hampel H.
        Multigene panel testing provides a new perspective on Lynch syndrome.
        J. Clin. Oncol. 2017; JCO2016719260
        • Tung N.
        • Domchek S.M.
        • Stadler Z.
        • Nathanson K.L.
        • Couch F.
        • Garber J.E.
        • et al.
        Counselling framework for moderate-penetrance cancer-susceptibility mutations.
        Nat. Rev. Clin. Oncol. 2016; 13: 581-588
        • Provenzale D.
        • Gupta S.
        • Ahnen D.J.
        • Bray T.
        • Cannon J.A.
        • Cooper G.
        • et al.
        Genetic/familial high-risk assessment: colorectal version 1.2016, NCCN clinical practice guidelines in oncology.
        J. Natl. Compr. Cancer Netw. 2016; 14: 1010-1030