Advertisement

Phase II study of Vigil® DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer

Published:September 24, 2016DOI:https://doi.org/10.1016/j.ygyno.2016.09.018

      Highlights

      • Vigil (DNA engineered immunotherapy), well tolerated in frontline ovarian cancer.
      • Significant induction of delay in relapse (p = 0.033) shown between Vigil/control.
      • Correlation of T cell activation (ELISPOT response) and clinical benefit

      Abstract

      Objectives

      The majority of women with Stage III/IV ovarian cancer who achieve clinical complete response with frontline standard of care will relapse within 2 years. Vigil immunotherapy, a GMCSF/bi-shRNA furin DNA engineered autologous tumor cell (EATC) product, demonstrated safety and induction of circulating activated T-cells against autologous tumor in Phase I trial Senzer et al. (2012, 2013) . Our objectives for this study include evaluation of safety, immune response and recurrence free survival (RFS).

      Methods

      This is a Phase II crossover trial of Vigil (1.0 × 107 cells/intradermal injection/month for 4 to 12 doses) in Stage III/IV ovarian cancer patients achieving cCR (normal imaging, CA-125 ≤ 35 units/ml, physical exam, and no symptoms suggestive of the presence of active disease) following primary surgical debulking and carboplatin/paclitaxel adjuvant or neoadjuvant chemotherapy. Patients received Vigil or standard of care during the maintenance period.

      Results

      Forty-two patients were entered into trial, 31 received Vigil and 11 received standard of care. No ≥ Grade 3 toxicity related to product was observed. A marked induction of circulating activated T-cell population was observed against individual, pre-processed autologous tumor in the Vigil arm as compared to pre-Vigil baseline using IFNγ ELISPOT response (30/31 negative ELISPOT pre Vigil to 31/31 positive ELISPOT post Vigil, median 134 spots). Moreover, in correlation with ELISPOT response, RFS from time of procurement was improved (mean 826 days/median 604 days in the Vigil arm from mean 481 days/median 377 days in the control arm, p = 0.033).

      Conclusion

      In conjunction with the demonstrated safety, the high rate of induction of T-cell activation and correlation with improvement in RFS justify further Phase II/III assessment of Vigil.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Senzer N.
        • Barve M.
        • Kuhn J.
        • Melnyk A.
        • Beitsch P.
        • Lazar M.
        • et al.
        Phase I trial of “bi-shRNAi(furin)/GMCSF DNA/autologous tumor cell” vaccine (FANG) in advanced cancer.
        Mol. Ther. 2012; 20 (Epub 2011/12/22): 679-686
        • Senzer N.
        • Barve M.
        • Nemunaitis J.
        • Kuhn J.
        • Melnyk A.
        • Beitsch P.
        • et al.
        Long term follow up: phase I trial of “bi-shRNA furin/GMCSF DNA/Autologous Tumor Cell” immunotherapy (FANG™) in advanced cancer.
        Journal of Vaccines and Vaccination. 2013; 4: 209
        • Gadducci A.
        • Cosio S.
        • Conte P.F.
        • Genazzani A.R.
        Consolidation and maintenance treatments for patients with advanced epithelial ovarian cancer in complete response after first-line chemotherapy: a review of the literature.
        Crit. Rev. Oncol. Hematol. 2005; 55 (Epub 2005/05/14): 153-166
        • Markman M.
        • Liu P.Y.
        • Wilczynski S.
        • Monk B.
        • Copeland L.J.
        • Alvarez R.D.
        • et al.
        Phase III randomized trial of 12 versus 3 months of maintenance paclitaxel in patients with advanced ovarian cancer after complete response to platinum and paclitaxel-based chemotherapy: a Southwest Oncology Group and Gynecologic Oncology Group trial.
        J. Clin. Oncol. 2003; 21 (Epub 2003/06/28): 2460-2465
        • Stuart G.C.
        First-line treatment regimens and the role of consolidation therapy in advanced ovarian cancer.
        Gynecol. Oncol. 2003; 90 (Epub 2003/09/18): S8-15
        • Sabbatini P.
        • Harter P.
        • Scambia G.
        • Sehouli J.
        • Meier W.
        • Wimberger P.
        • et al.
        Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: a phase III trial of the AGO OVAR, COGI, GINECO, and GEICO—the MIMOSA study.
        J. Clin. Oncol. 2013; 31 (Epub 2013/03/13): 1554-1561
        • Markman M.
        • Liu P.Y.
        • Moon J.
        • Monk B.J.
        • Copeland L.
        • Wilczynski S.
        • et al.
        Impact on survival of 12 versus 3 monthly cycles of paclitaxel (175 mg/m2) administered to patients with advanced ovarian cancer who attained a complete response to primary platinum-paclitaxel: follow-up of a Southwest Oncology Group and Gynecologic Oncology Group phase 3 trial.
        Gynecol. Oncol. 2009; 114 (Epub 2009/05/19): 195-198
        • Burger R.A.
        • Brady M.F.
        • Bookman M.A.
        • Fleming G.F.
        • Monk B.J.
        • Huang H.
        • et al.
        Incorporation of bevacizumab in the primary treatment of ovarian cancer.
        N. Engl. J. Med. 2011; 365 (Epub 2011/12/30): 2473-2483
        • Perren T.J.
        • Swart A.M.
        • Pfisterer J.
        • Ledermann J.A.
        • Pujade-Lauraine E.
        • Kristensen G.
        • et al.
        A phase 3 trial of bevacizumab in ovarian cancer.
        N. Engl. J. Med. 2011; 365 (Epub 2011/12/30): 2484-2496
        • Mei L.
        • Chen H.
        • Wei D.M.
        • Fang F.
        • Liu G.J.
        • Xie H.Y.
        • et al.
        Maintenance chemotherapy for ovarian cancer.
        Cochrane Database Syst. Rev. 2013; 6 (Epub 2013/07/03)CD007414
        • Messori A.
        • Fadda V.
        • Maratea D.
        • Trippoli S.
        Maintenance chemotherapy in ovarian cancer: a trial-sequential analysis.
        J. Cancer Ther. 2013; 4: 1242-1243
        • Lesnock J.L.
        • Farris C.
        • Krivak T.C.
        • Smith K.J.
        • Markman M.
        Consolidation paclitaxel is more cost-effective than bevacizumab following upfront treatment of advanced epithelial ovarian cancer.
        Gynecol. Oncol. 2011; 122 (Epub 2011/06/15): 473-478
        • Burger R.A.
        • Brady M.F.
        • Bookman M.A.
        • Fleming G.F.
        • Monk B.J.
        • Huang H.
        • et al.
        Incorporation of bevacizumab in the primary treatment of ovarian cancer.
        N. Engl. J. Med. 2011; 365 (Epub 2011/12/30): 2473-2483
        • Aghajanian C.
        • Blank S.V.
        • Goff B.A.
        • Judson P.L.
        • Teneriello M.G.
        • Husain A.
        • et al.
        OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer.
        J. Clin. Oncol. 2012; 30 (Epub 2012/04/25): 2039-2045
        • Pujade-Lauraine E.
        • Hilpert F.
        • Weber B.
        • Reuss A.
        • Poveda A.
        • Kristensen G.
        • et al.
        Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial.
        J. Clin. Oncol. 2014; 32 (Epub 2014/03/19): 1302-1308
        • Liu J.F.
        • Cannistra S.A.
        Emerging role for bevacizumab in combination with chemotherapy for patients with platinum-resistant ovarian cancer.
        J. Clin. Oncol. 2014; 32 (Epub 2014/03/19): 1287-1289
        • Kandalaft L.E.
        • Powell Jr., D.J.
        • Singh N.
        • Coukos G.
        Immunotherapy for ovarian cancer: what's next?.
        J. Clin. Oncol. 2011; 29 (Epub 2010/11/17): 925-933
        • Bristow R.E.
        • Baldwin R.L.
        • Yamada S.D.
        • Korc M.
        • Karlan B.Y.
        Altered expression of transforming growth factor-beta ligands and receptors in primary and recurrent ovarian carcinoma.
        Cancer. 1999; 85 (Epub 1999/03/26): 658-668
        • Soares K.C.
        • Rucki A.A.
        • Kim V.
        • Foley K.
        • Solt S.
        • Wolfgang C.L.
        • et al.
        TGF-beta blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner.
        Oncotarget. 2015; 6 (Epub 2015/10/31): 43005-43015
        • Karyampudi L.
        • Lamichhane P.
        • Scheid A.D.
        • Kalli K.R.
        • Shreeder B.
        • Krempski J.W.
        • et al.
        Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody.
        Cancer Res. 2014; 74 (Epub 2014/04/15): 2974-2985
        • Ghisoli M.
        • Barve M.
        • Mennel R.
        • Lenarsky C.
        • Horvath S.
        • Wallraven G.
        Three year follow up of Vigil™ immunotherapy in metastatic advanced Ewing's sarcoma.
        Mol. Ther. 2016; (in press)
        • Markman M.
        • Liu P.Y.
        • Rothenberg M.L.
        • Monk B.J.
        • Brady M.
        • Alberts D.S.
        Pretreatment CA-125 and risk of relapse in advanced ovarian cancer.
        J. Clin. Oncol. 2006; 24 (Epub 2006/03/22): 1454-1458
        • Jemal A.
        • Siegel R.
        • Ward E.
        • Hao Y.
        • Xu J.
        • Thun M.J.
        Cancer statistics, 2009.
        CA Cancer J. Clin. 2009; 59: 225-249
        • Sheikh N.A.
        • Petrylak D.
        • Kantoff P.W.
        • Dela Rosa C.
        • Stewart F.P.
        • Kuan L.Y.
        • et al.
        Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer.
        Cancer Immunol. Immunother. 2013; 62 (Epub 2012/08/07): 137-147
        • Li X.
        • Ye F.
        • Chen H.
        • Lu W.
        • Wan X.
        • Xie X.
        Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(−) T cells through secreting TGF-beta.
        Cancer Lett. 2007; 253 (Epub 2007/03/14): 144-153
        • Milne K.
        • Kobel M.
        • Kalloger S.E.
        • Barnes R.O.
        • Gao D.
        • Gilks C.B.
        • et al.
        Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors.
        PLoS ONE. 2009; 4 (Epub 2009/07/31)e6412
        • Page R.E.
        • Klein-Szanto A.J.
        • Litwin S.
        • Nicolas E.
        • Al-Jumaily R.
        • Alexander P.
        • et al.
        Increased expression of the pro-protein convertase furin predicts decreased survival in ovarian cancer.
        Cellular Oncology: The Official Journal of the International Society for Cellular Oncology. 2007; 29 (Epub 2007/07/21): 289-299
        • Yamaguchi Y.
        • Tsumura H.
        • Miwa M.
        • Inaba K.
        Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow.
        Stem Cells. 1997; 15: 144-153
        • Joshi N.S.
        • Cui W.
        • Chandele A.
        • Lee H.K.
        • Urso D.R.
        • Hagman J.
        • et al.
        Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor.
        Immunity. 2007; 27 (Epub 2007/08/29): 281-295
        • Coleman S.
        • Clayton A.
        • Mason M.D.
        • Jasani B.
        • Adams M.
        • Tabi Z.
        Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer.
        Cancer Res. 2005; 65 (Epub 2005/08/03): 7000-7006
        • Hato S.V.
        • Khong A.
        • de Vries I.J.
        • Lesterhuis W.J.
        Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics.
        Clin. Cancer Res. 2014; 20 (Epub 2014/06/01): 2831-2837
        • Geissmann F.
        • Revy P.
        • Regnault A.
        • Lepelletier Y.
        • Dy M.
        • Brousse N.
        • et al.
        TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells.
        J. Immunol. 1999; 162: 4567-4575
        • Takeuchi M.
        • Alard P.
        • Streilein J.W.
        TGF-beta promotes immune deviation by altering accessory signals of antigen-presenting cells.
        J. Immunol. 1998; 160: 1589-1597
        • Dranoff G.
        • Jaffee E.
        • Lazenby A.
        • Golumbek P.
        • Levitsky H.
        • Brose K.
        • et al.
        Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity.
        Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 3539-3543
        • Zeng G.
        • Wang X.
        • Robbins P.F.
        • Rosenberg S.A.
        • Wang R.F.
        CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production.
        Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 3964-3969
        • Banchereau J.
        • Briere F.
        • Caux C.
        • Davoust J.
        • Lebecque S.
        • Liu Y.J.
        • et al.
        Immunobiology of dendritic cells.
        Annu. Rev. Immunol. 2000; 18: 767-811
        • Young J.W.
        • Inaba K.
        Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity.
        J. Exp. Med. 1996; 183: 7-11
        • Shen Z.
        • Reznikoff G.
        • Dranoff G.
        • Rock K.L.
        Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules.
        J. Immunol. 1997; 158: 2723-2730
        • Yamaguchi H.
        • Furukawa K.
        • Fortunato S.R.
        • Livingston P.O.
        • Lloyd K.O.
        • Oettgen H.F.
        • et al.
        Human monoclonal antibody with dual GM2/GD2 specificity derived from an immunized melanoma patient.
        Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 3333-3337