In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma

Published:September 07, 2016DOI:


      • Niraparib is a PARP inhibitor under clinical development.
      • Predictive biomarkers of PARP inhibitor response may help with patient selection.
      • Gene mutations are neither necessary nor sufficient for in vivo niraparib response.
      • Diminished RAD51 foci failed to predict response.
      • Assessment of repair status through multiple complementary assays is needed.



      Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo.


      Massively parallel sequencing was performed on HGSOCs to identify mutations contributing to HR deficiency. HR pathway integrity was assessed using fluorescence microscopy-based RAD51 focus formation assays. Effects of niraparib (MK-4827) on treatment-naïve PDX tumor growth as monotherapy, in combination with carboplatin/paclitaxel, and as maintenance therapy were assessed by transabdominal ultrasound. Niraparib responses were correlated with changes in levels of poly(ADP-ribose), PARP1, and repair proteins by western blotting.


      Five PDX models were evaluated in vivo. Tumor regressions were induced by single-agent niraparib in one of two PDX models with deleterious BRCA2 mutations and in a PDX with RAD51C promoter methylation. Diminished formation of RAD51 foci failed to predict response, but Artemis loss was associated with resistance. Niraparib generally failed to enhance responses to carboplatin/paclitaxel chemotherapy, but maintenance niraparib therapy delayed progression in a BRCA2-deficient PDX.


      Mutations in HR genes are neither necessary nor sufficient to predict response to niraparib. Assessment of repair status through multiple complementary assays is needed to guide PARP inhibitor therapy, design future clinical trials and identify ovarian cancer patients most likely to benefit from PARP inhibition.


      BRCA1/2 (BRCA1 or BRCA2), CDK (cyclin-dependent kinase), FBS (heat-inactivated fetal bovine serum), HGSOC (high-grade serous ovarian carcinoma), HR (homologous recombination), IP (intraperitoneal), pADPr (poly(ADP-ribose) polymer), PARP (poly(ADP-ribose) polymerase), PBS (Dulbecco's calcium- and magnesium-free phosphate buffered saline), PDX (patient-derived xenograft), SCID (severe combined immunodeficiency), TP53 (tumor protein p53)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Nature. 2011; 474: 609-615
        • Abkevich V.
        • Timms K.M.
        • Hennessy B.T.
        • Potter J.
        • Carey M.S.
        • Meyer L.A.
        • et al.
        Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer.
        Br. J. Cancer. 2012; 107: 1776-1782
        • Pennington K.P.
        • Walsh T.
        • Harrell M.I.
        • Lee M.K.
        • Pennil C.C.
        • Rendi M.H.
        • et al.
        Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas.
        Clin. Cancer Res. 2014; 20: 764-775
        • Walsh T.
        • Casadei S.
        • Lee M.K.
        • Pennil C.C.
        • Nord A.S.
        • Thornton A.M.
        • et al.
        Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 18032-18037
        • Wickramanyake A.
        • Bernier G.
        • Pennil C.
        • Casadei S.
        • Agnew K.J.
        • Stray S.M.
        • et al.
        Loss of function germline mutations in RAD51D in women with ovarian carcinoma.
        Gynecol. Oncol. 2012; 127: 552-555
        • Bast Jr., R.C.
        • Mills G.B.
        Personalizing therapy for ovarian cancer: BRCAness and beyond.
        J. Clin. Oncol. 2010; 28: 3545-3548
        • Cass I.
        • Baldwin R.L.
        • Varkey T.
        • Moslehi R.
        • Narod S.A.
        • Karlan B.Y.
        Improved survival in women with BRCA-associated ovarian carcinoma.
        Cancer. 2003; 97: 2187-2195
        • Ben David Y.
        • Chetrit A.
        • Hirsh-Yechezkel G.
        • Friedman E.
        • Beck B.D.
        • Beller U.
        • et al.
        Effect of BRCA mutations on the length of survival in epithelial ovarian tumors.
        J. Clin. Oncol. 2002; 20: 463-466
        • Gallagher D.J.
        • Konner J.A.
        • Bell-McGuinn K.M.
        • Bhatia J.
        • Sabbatini P.
        • Aghajanian C.A.
        • et al.
        Survival in epithelial ovarian cancer: a multivariate analysis incorporating BRCA mutation status and platinum sensitivity.
        Ann. Oncol. 2011; 22: 1127-1132
        • Mukhopadhyay A.
        • Plummer E.R.
        • Elattar A.
        • Soohoo S.
        • Uzir B.
        • Quinn J.E.
        • et al.
        Clinicopathological features of homologous recombination-deficient epithelial ovarian cancers: sensitivity to PARP inhibitors, platinum, and survival.
        Cancer Res. 2012; 72: 5675-5682
        • Farmer H.
        • McCabe N.
        • Lord C.J.
        • Tutt A.N.
        • Johnson D.A.
        • Richardson T.B.
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921
        • Bryant H.E.
        • Schultz N.
        • Thomas H.D.
        • Parker K.M.
        • Flower D.
        • Lopez E.
        • et al.
        Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.
        Nature. 2005; 434: 913-917
        • McCabe N.
        • Turner N.C.
        • Lord C.J.
        • Kluzek K.
        • Bialkowska A.
        • Swift S.
        • et al.
        Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.
        Cancer Res. 2006; 66: 8109-8115
        • Blazek D.
        • Kohoutek J.
        • Bartholomeeusen K.
        • Johansen E.
        • Hulinkova P.
        • Luo Z.
        • et al.
        The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes.
        Genes Dev. 2011; 25: 2158-2172
        • Bajrami I.
        • Frankum J.R.
        • Konde A.
        • Miller R.E.
        • Rehman F.L.
        • Brough R.
        • et al.
        Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity.
        Cancer Res. 2014; 74: 287-297
        • Joshi P.M.
        • Sutor S.L.
        • Huntoon C.J.
        • Karnitz L.M.
        Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors.
        J. Biol. Chem. 2014; 289: 9247-9253
        • Scott C.L.
        • Swisher E.M.
        • Kaufmann S.H.
        Poly (ADP-ribose) polymerase inhibitors: recent advances and future development.
        J. Clin. Oncol. 2015; 33: 1397-1406
        • Lee J.M.
        • Ledermann J.A.
        • Kohn E.C.
        PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies.
        Ann. Oncol. 2014; 25: 32-40
        • Audeh M.W.
        • Carmichael J.
        • Penson R.T.
        • Friedlander M.
        • Powell B.
        • Bell-McGuinn K.M.
        • et al.
        Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial.
        Lancet. 2010; 376: 245-251
        • Gelmon K.A.
        • Tischkowitz M.
        • Mackay H.
        • Swenerton K.
        • Robidoux A.
        • Tonkin K.
        • et al.
        Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study.
        Lancet Oncol. 2011; 12: 852-861
        • Fong P.C.
        • Yap T.A.
        • Boss D.S.
        • Carden C.P.
        • Mergui-Roelvink M.
        • Gourley C.
        • et al.
        Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval.
        J. Clin. Oncol. 2010; 28: 2512-2519
        • Ledermann J.
        • Harter P.
        • Gourley C.
        • Friedlander M.
        • Vergote I.
        • Rustin G.
        • et al.
        Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial.
        Lancet Oncol. 2014; 15: 852-861
        • Jones P.
        • Altamura S.
        • Boueres J.
        • Ferrigno F.
        • Fonsi M.
        • Giomini C.
        • et al.
        Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors.
        J. Med. Chem. 2009; 52: 7170-7185
        • Sandhu S.K.
        • Schelman W.R.
        • Wilding G.
        • Moreno V.
        • Baird R.D.
        • Miranda S.
        • et al.
        The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial.
        Lancet Oncol. 2013; 14: 882-892
        • Mukhopadhyay A.
        • Elattar A.
        • Cerbinskaite A.
        • Wilkinson S.J.
        • Drew Y.
        • Kyle S.
        • et al.
        Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors.
        Clin. Cancer Res. 2010; 16: 2344-2351
        • Shah M.M.
        • Dobbin Z.C.
        • Nowsheen S.
        • Wielgos M.
        • Katre A.A.
        • Alvarez R.D.
        • et al.
        An ex vivo assay of XRT-induced Rad51 foci formation predicts response to PARP-inhibition in ovarian cancer.
        Gynecol. Oncol. 2014; 134: 331-337
        • Weroha S.J.
        • Becker M.A.
        • Enderica-Gonzalez S.
        • SC H.
        • AL O.
        • MJ M.
        • et al.
        Tumorgrafts as in vivo surrogates for women with ovarian cancer.
        Clin. Cancer Res. 2014;
        • Patel A.
        • Sarkaria J.
        • Kaufmann S.H.
        Nonhomologous end-joining drives PARP inhibitor synthetic lethality in homologous recombination-deficient cells.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 3406-3411
        • Kaufmann S.H.
        • Svingen P.A.
        • Gore S.D.
        • Armstrong D.K.
        • Cheng Y.C.
        • Rowinsky E.K.
        Altered formation of topotecan-stabilized topoisomerase I-DNA adducts in human leukemia cells.
        Blood. 1997; 89: 2098-2104
        • Kaufmann S.H.
        Reutilization of immunoblots after chemiluminescent detection.
        Anal. Biochem. 2001; 296: 283-286
        • Esteller M.
        • Silva J.M.
        • Dominguez G.
        • Bonilla F.
        • Matias-Guiu X.
        • Lerma E.
        • et al.
        Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors.
        J. Natl. Cancer Inst. 2000; 92: 564-569
        • SAS Institute I
        • SAS Institute I
        SAS/STAT User Guide 9.0 ed.
        SAS Institute Inc., Carey, NC2005
        • Littell R.C.
        • Pendergast J.
        • Natarajan R.
        Modelling covariance structure in the analysis of repeated measures data.
        Stat. Med. 2000; 19: 1793-1819
        • Williams G.H.
        • Stoeber K.
        Cell cycle markers in clinical oncology.
        Curr. Opin. Cell Biol. 2007; 19: 672-679
        • Sakai W.
        • Swisher E.M.
        • Jacquemont C.
        • Chandramohan K.V.
        • Couch F.J.
        • Langdon S.P.
        • et al.
        Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma.
        Cancer Res. 2009; 69: 6381-6386
      2. Keith M. Wilcoxen, David G. Brooks, Dhanrajan Tiruchinapalli, Nathan Anderson, Rodney Donaldson, McIver Nivens, Charlie Cook, Tin Khor, Bin Lu, Elizabeth De Oliveira, Erin Hawley, Elizabeth Bruckheimer. The PARP inhibitor niraparib demonstrates synergy with chemotherapy in treatment of patient derived Ewing's sarcoma tumorGraft models. Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. Oct 19–23, 2013; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013: 12(11 Suppl.);Abstract nr A258.

        • Williamson C.T.
        • Kubota E.
        • Hamill J.D.
        • Klimowicz A.
        • Ye R.
        • Muzik H.
        • et al.
        Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53.
        EMBO Mol. Med. 2012; 4: 515-527
        • Wang J.
        • Aroumougame A.
        • Lobrich M.
        • Li Y.
        • Chen D.
        • Chen J.
        • et al.
        PTIP associates with Artemis to dictate DNA repair pathway choice.
        Genes Dev. 2014; 28: 2693-2698
        • Chun J.
        • Buechelmaier E.S.
        • Powell S.N.
        Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway.
        Mol. Cell. Biol. 2013; 33: 387-395
        • Min A.
        • Im S.A.
        • Yoon Y.K.
        • Song S.H.
        • Nam H.J.
        • Hur H.S.
        • et al.
        RAD51C-deficient cancer cells are highly sensitive to the PARP inhibitor olaparib.
        Mol. Cancer Ther. 2013; 12: 865-877