Advertisement

Panobinostat sensitizes cyclin E high, homologous recombination-proficient ovarian cancer to olaparib

      Highlights

      • Panobinostat downregulates DNA damage repair genes and homologous recombination (HR) efficiency in cyclin E-overexpressing, HR-proficient ovarian cancer cells.
      • Panobinostat synergizes with the poly (ADP-ribose) polymerase inhibitor olaparib to inhibit growth and viability in HR-proficient ovarian cancer cells.
      • Panobinostat combined with olaparib promotes DNA damage and apoptosis in HR-proficient ovarian cancer cells in vitro and in vivo.

      Abstract

      Objective

      Homologous recombination (HR) proficient ovarian cancers, including CCNE1 (cyclin E)-amplified tumors, are resistant to poly (ADP-ribose) polymerase inhibitors (PARPi). Histone deacetylase inhibitors (HDACi) are effective in overcoming tumor resistance to DNA damaging drugs. Our goal was to determine whether panobinostat, a newly FDA-approved HDACi, can sensitize cyclin E, HR-proficient ovarian cancer cells to the PARPi olaparib.

      Methods

      Expression levels of CCNE1 (cyclin E), BRCA1, RAD51 and E2F1 in ovarian tumors and cell lines were extracted from The Cancer Genome Atlas (TCGA) and Broad-Novartis Cancer Cell Line Encyclopedia (CCLE). In HR-proficient ovarian cancer cell line models (OVCAR-3, OVCAR-4, SKOV-3, and UWB1.289 + BRCA1 wild-type), cell growth and viability were assessed by sulforhodamine B and xenograft assays. DNA damage and repair (pH2AX and RAD51 co-localization and DRGFP reporter activity) and apoptosis (cleaved PARP and cleaved caspase-3) were assessed by immunofluorescence and Western blot assays.

      Results

      TCGA and CCLE data revealed positive correlations (Spearman) between cyclin E E2F1, and E2F1 gene targets related to DNA repair (BRCA1 and RAD51). Panobinostat downregulated cyclin E and HR repair pathway genes, and reduced HR efficiency in cyclin E-amplified OVCAR-3 cells. Further, panobinostat synergized with olaparib in reducing cell growth and viability in HR-proficient cells. Similar co-operative effects were observed in xenografts, and on pharmacodynamic markers of HR repair, DNA damage and apoptosis.

      Conclusions

      These results provide preclinical rationale for using HDACi to reduce HR in cyclin E-overexpressing and other types of HR-proficient ovarian cancer as a means of enhancing PARPi activity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J. Clin. 2016; 66: 7-30
        • Kaufman B.
        • Shapira-Frommer R.
        • Schmutzler R.K.
        • Audeh M.W.
        • Friedlander M.
        • Balmana J.
        • et al.
        Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
        J. Clin. Oncol. 2015; 33: 244-250
        • Scott C.L.
        • Swisher E.M.
        • Kaufmann S.H.
        Poly (adp-ribose) polymerase inhibitors: recent advances and future development.
        J. Clin. Oncol. 2015; 33: 1397-1406
        • Konstantinopoulos P.A.
        • Wilson A.J.
        • Saskowski J.
        • Wass E.
        • Khabele D.
        Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer.
        Gynecol. Oncol. 2014; 133: 599-606
        • Turner N.
        • Tutt A.
        • Ashworth A.
        Hallmarks of ‘BRCAness’ in sporadic cancers.
        Nat. Rev. Cancer. 2004; 4: 814-819
        • Cancer Genome Atlas Research Network
        Integrated genomic analyses of ovarian carcinoma.
        Nature. 2011; 474: 609-615
        • Fong P.C.
        • Yap T.A.
        • Boss D.S.
        • Carden C.P.
        • Mergui-Roelvink M.
        • Gourley C.
        • et al.
        Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval.
        J. Clin. Oncol. 2010; 28: 2512-2519
        • Ledermann J.
        • Harter P.
        • Gourley C.
        • Friedlander M.
        • Vergote I.
        • Rustin G.
        • et al.
        Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
        N. Engl. J. Med. 2012; 366: 1382-1392
        • Wiedemeyer W.R.
        • Beach J.A.
        • Karlan B.Y.
        Reversing platinum resistance in high-grade serous ovarian carcinoma: targeting BRCA and the homologous recombination system.
        Front Oncol. 2014; 4: 34
        • Akli S.
        • Keyomarsi K.
        Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy.
        Cancer Biol. Ther. 2003; 2: S38-S47
        • Topp M.D.
        • Hartley L.
        • Cook M.
        • Heong V.
        • Boehm E.
        • McShane L.
        • et al.
        Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts.
        Mol. Oncol. 2014; 8: 656-668
        • Karst A.M.
        • Jones P.M.
        • Vena N.
        • Ligon A.H.
        • Liu J.F.
        • Hirsch M.S.
        • et al.
        Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers.
        Cancer Res. 2014; 74: 1141-1152
        • Etemadmoghadam D.
        • George J.
        • Cowin P.A.
        • Cullinane C.
        • Kansara M.
        Australian Ovarian Cancer Study Group, Gorringe KL et al. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer.
        PLoS One. 2010; 5e15498
        • Patch A.M.
        • Christie E.L.
        • Etemadmoghadam D.
        • Garsed D.W.
        • George J.
        • Fereday S.
        • et al.
        Whole-genome characterization of chemoresistant ovarian cancer.
        Nature. 2015; 521: 489-494
        • Etemadmoghadam D.
        • Weir B.A.
        • Au-Yeung G.
        • Alsop K.
        • Mitchell G.
        • George J.
        • et al.
        Synthetic lethality between CCNE1 amplification and loss of BRCA1.
        PNAS. 2013; 110: 19489-19494
        • Etemadmoghadam D.
        • Au-Yeung G.
        • Wall M.
        • Mitchell C.
        • Kansara M.
        • Loehrer E.
        • et al.
        Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer.
        Clin. Cancer Res. 2013; 19: 5960-5971
        • Taylor-Harding B.
        • Aspuria P.J.
        • Agadjanian H.
        • Cheon D.J.
        • Mizuno T.
        • Greenberg D.
        • et al.
        Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.
        Oncotarget. 2015; 6: 696-714
        • Wilson A.J.
        • Lalani A.S.
        • Wass E.
        • Saskowski J.
        • Khabele D.
        Romidepsin (FK228) combined with cisplatin stimulates DNA damage-induced cell death in ovarian cancer.
        Gynecol. Oncol. 2012; 127: 579-586
        • Wilson A.J.
        • Holson E.
        • Wagner F.
        • Zhang Y.L.
        • Fass D.M.
        • Haggarty S.J.
        • et al.
        The DNA damage mark pH2AX differentiates the cytotoxic effects of small molecule HDAC inhibitors in ovarian cancer cells.
        Cancer Biol. Ther. 2011; 12: 484-493
        • Anne M.
        • Sammartino D.
        • Barginear M.F.
        • Budman D.
        Profile of panobinostat and its potential for treatment in solid tumors: an update.
        OncoTargets and Therapy. 2013; 6 (Epub 2013/11/23): 1613-1624
        • Lorenzi P.L.
        • Reinhold W.C.
        • Varma S.
        • Hutchinson A.A.
        • Pommier Y.
        • Chanock S.J.
        • et al.
        DNA fingerprinting of the NCI-60 cell line panel.
        Mol. Cancer Ther. 2009; 8: 713-724
        • Scudiero D.A.
        • Monks A.
        • Sausville E.A.
        Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen.
        J. Natl. Cancer Inst. 1998; 90: 862
        • DelloRusso C.
        • Welcsh P.L.
        • Wang W.
        • Garcia R.L.
        • King M.C.
        • Swisher E.M.
        Functional characterization of a novel BRCA1-null ovarian cancer cell line in response to ionizing radiation.
        Mol. Cancer Res. 2007; 5: 35-45
        • Fong P.C.
        • Boss D.S.
        • Yap T.A.
        • Tutt A.
        • Wu P.
        • Mergui-Roelvink M.
        • Mortimer P.
        • et al.
        Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers.
        N. Engl. J. Med. 2009; 361: 123-134
        • Chou T.C.
        • Talalay P.
        Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.
        Adv. Enzym. Regul. 1984; 22: 27-55
        • Wilson A.J.
        • Fadare O.
        • Beeghly-Fadiel A.
        • Son D.S.
        • Liu Q.
        • Zhao S.
        • et al.
        Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer.
        Oncotarget. 2015; : 21353-21368
        • Pierce A.J.
        • Johnson R.D.
        • Thompson L.H.
        • Jasin M.
        XRCC3 promotes homology-directed repair of DNA damage in mammalian cells.
        Genes Dev. 1999; 13: 2633-2638
        • Richardson C.
        • Moynahan M.E.
        • Jasin M.
        Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations.
        Genes Dev. 1998; 12: 3831-3842
        • Domcke S.
        • Sinha R.
        • Levine D.A.
        • Sander C.
        • Schultz N.
        Evaluating cell lines as tumour models by comparison of genomic profiles.
        Nat. Commun. 2013; 4: 2126
        • Banath J.P.
        • Klokov D.
        • MacPhail S.H.
        • Banuelos C.A.
        • Olive P.L.
        Residual gammaH2AX foci as an indication of lethal DNA lesions.
        BMC Cancer. 2010; 10: 4
        • Alsop K.
        • Fereday S.
        • Meldrum C.
        • de Fazio A.
        • Emmanuel C.
        • George J.
        • et al.
        BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group.
        J. Clin. Oncol. 2012; 30: 2654-2663
        • Audeh M.W.
        • Carmichael J.
        • Penson R.T.
        • Friedlander M.
        • Powell B.
        • Bell-McGuinn K.M.
        • et al.
        Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial.
        Lancet. 2010; 376: 245-251
        • Richardson P.G.
        • Harvey R.D.
        • Laubach J.P.
        • Moreau P.
        • Lonial S.
        • San-Miguel J.F.
        Panobinostat for the treatment of relapsed or relapsed/refractory multiple myeloma: pharmacology and clinical outcomes.
        Expert. Rev. Clin. Pharmacol. 2016; 9: 35-48
        • Shahbazi J.
        • Liu P.Y.
        • Atmadibrata B.
        • Bradner J.E.
        • Marshall G.M.
        • Lock R.B.
        • et al.
        The bromodomain inhibitor JQ1 and the histone deacetylase inhibitor panobinostat synergistically reduce N-Myc expression and induce anticancer effects.
        Clin. Cancer Res. 2016; 22: 2534-2544
        • Fiskus W.
        • Buckley K.
        • Rao R.
        • Mandawat A.
        • Yang Y.
        • Joshi R.
        • et al.
        Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells.
        Cancer Biol. Ther. 2009; 8: 939-950
        • Wells C.E.
        • Bhaskara S.
        • Stengel K.R.
        • Zhao Y.
        • Sirbu B.
        • Chagot B.
        • et al.
        Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma.
        PLoS One. 2013; 8e68915
        • Bhaskara S.
        • Chyla B.J.
        • Amann J.M.
        • Knutson S.K.
        • Cortez D.
        • Sun Z.W.
        • et al.
        Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control.
        Mol. Cell. 2008; 30: 61-72
        • Bhaskara S.
        • Knutson S.K.
        • Jiang G.
        • Chandrasekharan M.B.
        • Wilson A.J.
        • Zheng S.
        • et al.
        Hdac3 is essential for the maintenance of chromatin structure and genome stability.
        Cancer Cell. 2010; 18: 436-447
        • Khabele D.
        The therapeutic potential of class I selective histone deacetylase inhibitors in ovarian cancer.
        Front Oncol. 2014; 4: 111