Advertisement
Review| Volume 137, ISSUE 2, P335-342, May 2015

Download started.

Ok

Cellular immunotherapy in ovarian cancer: Targeting the stem of recurrence

  • Christina Wefers
    Affiliations
    Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands

    Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
    Search for articles by this author
  • Author Footnotes
    1 Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
    Laurens J. Lambert
    Footnotes
    1 Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
    Affiliations
    Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
    Search for articles by this author
  • Ruurd Torensma
    Affiliations
    Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
    Search for articles by this author
  • Stanleyson V. Hato
    Correspondence
    Corresponding author at: Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
    Affiliations
    Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
    Search for articles by this author
  • Author Footnotes
    1 Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Published:February 26, 2015DOI:https://doi.org/10.1016/j.ygyno.2015.02.019

      Highlights

      • Review immune system in ovarian cancer and state of cellular immunotherapy
      • Present cancer stem cells as targets for clinical application of immunotherapy
      • Postulate the use of adjuvant DC vaccination to complement current treatment

      Abstract

      Ovarian cancer is a devastating disease with a high relapse rate. Due to a mostly asymptomatic early stage and lack of early diagnostic tools, the disease is usually diagnosed in a late stage. Surgery and chemotherapy with taxanes and platinum compounds are very effective in reducing tumor burden. However, relapses occur frequently and there is a lack of credible second-line options. Therefore, new treatment modalities are eagerly awaited. The presence and influx of immune cells in the ovarian cancer tumor microenvironment are correlated with survival. High numbers of infiltrating T cells correlate with improved progression free and overall survival, while the presence of regulatory T cells and expression of T cell inhibitory molecules is correlated with a poor prognosis. These data indicate that immunotherapy, especially cell-based immunotherapy could be a promising novel addition to the treatment of ovarian cancer. Here, we review the available data on the immune contexture surrounding ovarian cancer and discuss novel strategies and targets for immunotherapy in ovarian cancer. In the end the addition of immunotherapy to existing therapeutic options could lead to a great improvement in the outcome of ovarian cancer, especially when targeting cancer stem cells.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.
        • Ma J.
        • Zou Z.
        • Jemal A.
        Cancer statistics, 2014.
        CA Cancer J. Clin. 2014; 64: 9-29
        • Jayson G.C.
        • Kohn E.C.
        • Kitchener H.C.
        • Ledermann J.A.
        Ovarian cancer.
        Lancet. 2014; 384: 1376-1388
        • Mavaddat N.
        • Peock S.
        • Frost D.
        • Ellis S.
        • Platte R.
        • Fineberg E.
        • et al.
        Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE.
        J. Natl. Cancer Inst. 2013; 105: 812-822
        • Salani R.
        • Backes F.J.
        • Fung Kee Fung M.
        • Holschneider C.H.
        • Parker L.P.
        • Bristow R.E.
        • et al.
        Posttreatment surveillance and diagnosis of recurrence in women with gynecologic malignancies: Society of Gynecologic Oncologists recommendations.
        Am. J. Obstet. Gynecol. 2011; 204: 466-478
        • Markman M.
        • Walker J.L.
        Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment.
        J. Clin. Oncol. 2006; 24: 988-994
        • Mellman I.
        • Coukos G.
        • Dranoff G.
        Cancer immunotherapy comes of age.
        Nature. 2011; 480: 480-489
        • Zhang L.
        • Conejo-Garcia J.R.
        • Katsaros D.
        • Gimotty P.A.
        • Massobrio M.
        • Regnani G.
        • et al.
        Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.
        N. Engl. J. Med. 2003; 348: 203-213
        • Napoletano C.
        • Bellati F.
        • Landi R.
        • Pauselli S.
        • Marchetti C.
        • Visconti V.
        • et al.
        Ovarian cancer cytoreduction induces changes in T cell population subsets reducing immunosuppression.
        J. Cell. Mol. Med. 2010; 14: 2748-2759
        • Hato S.V.
        • Khong A.
        • de Vries I.J.
        • Lesterhuis W.J.
        Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics.
        Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014; 20: 2831-2837
        • Kroemer G.
        • Galluzzi L.
        • Kepp O.
        • Zitvogel L.
        Immunogenic cell death in cancer therapy.
        Annu. Rev. Immunol. 2013; 31: 51-72
        • Hato S.V.
        • de Vries I.J.
        • Lesterhuis W.J.
        STATing the importance of immune modulation by platinum chemotherapeutics.
        Oncoimmunology. 2012; 1: 234-236
        • Lesterhuis W.J.
        • Punt C.J.
        • Hato S.V.
        • Eleveld-Trancikova D.
        • Jansen B.J.
        • Nierkens S.
        • et al.
        Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice.
        J. Clin. Invest. 2011; 121: 3100-3108
        • Ramakrishnan R.
        • Assudani D.
        • Nagaraj S.
        • Hunter T.
        • Cho H.I.
        • Antonia S.
        • et al.
        Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice.
        J. Clin. Invest. 2010; 120: 1111-1124
        • Vivier E.
        • Ugolini S.
        • Blaise D.
        • Chabannon C.
        • Brossay L.
        Targeting natural killer cells and natural killer T cells in cancer.
        Nat. Rev. Immunol. 2012; 12: 239-252
        • Carlsten M.
        • Norell H.
        • Bryceson Y.T.
        • Poschke I.
        • Schedvins K.
        • Ljunggren H.-G.
        • et al.
        Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells.
        J. Immunol. 2009; 183: 4921-4930
        • Belisle J.A.
        • Gubbels J.A.A.
        • Raphael C.A.
        • Migneault M.
        • Rancourt C.
        • Connor J.P.
        • et al.
        Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125).
        Immunology. 2007; 122: 418-429
        • Patankar M.S.
        • Jing Y.
        • Morrison J.C.
        • Belisle J.A.
        • Lattanzio F.A.
        • Deng Y.
        • et al.
        Potent suppression of natural killer cell response mediated by the ovarian tumor marker CA125.
        Gynecol. Oncol. 2005; 99: 704-713
        • Dong H.P.
        • Elstrand M.B.
        • Holth A.
        • Silins I.
        • Berner A.
        • Trope C.G.
        • et al.
        NK- and B-cell infiltration correlates with worse outcome in metastatic ovarian carcinoma.
        Am. J. Clin. Pathol. 2006; 125: 451-458
        • Sato E.
        • Olson S.H.
        • Ahn J.
        • Bundy B.
        • Nishikawa H.
        • Qian F.
        • et al.
        Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 18538-18543
        • Gooden M.J.M.
        • de Bock G.H.
        • Leffers N.
        • Daemen T.
        • Nijman H.W.
        The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis.
        Br. J. Cancer. 2011; 105: 93-103
        • Hwang W.-T.
        • Adams S.F.
        • Tahirovic E.
        • Hagemann I.S.
        • Coukos G.
        Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis.
        Gynecol. Oncol. 2012; 124: 192-198
        • Hamanishi J.
        • Mandai M.
        • Iwasaki M.
        • Okazaki T.
        • Tanaka Y.
        • Yamaguchi K.
        • et al.
        Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer.
        Proc. Natl. Acad. Sci. 2007; 104: 3360-3365
        • Zou W.
        • Restifo N.P.
        TH17 cells in tumour immunity and immunotherapy.
        Nat. Rev. Immunol. 2010; 10: 248-256
        • Miyahara Y.
        • Odunsi K.
        • Chen W.
        • Peng G.
        • Matsuzaki J.
        • Wang R.-F.
        Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer.
        Proc. Natl. Acad. Sci. 2008; 105: 15505-15510
        • Kryczek I.
        • Banerjee M.
        • Cheng P.
        • Vatan L.
        • Szeliga W.
        • Wei S.
        • et al.
        Phenotype, Distribution, Generation, and Functional and Clinical Relevance of Th17 Cells in the Human Tumor Environments.
        2009
        • Fialová A.
        • Partlová S.
        • Sojka L.
        • Hromádková H.
        • Brtnický T.
        • Fučíková J.
        • et al.
        Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells.
        Int. J. Cancer. 2013; 132: 1070-1079
        • Vasaturo A.
        • Di Blasio S.
        • Peeters D.G.
        • de Koning C.C.
        • de Vries J.M.
        • Figdor C.G.
        • et al.
        Clinical implications of co-inhibitory molecule expression in the tumor microenvironment for DC vaccination: a game of stop and go.
        Front. Immunol. 2013; 4: 417
        • Rozali E.N.
        • Hato S.V.
        • Robinson B.W.
        • Lake R.A.
        • Lesterhuis W.J.
        Programmed death ligand 2 in cancer-induced immune suppression.
        Clin. Dev. Immunol. 2012; : 656340
        • Ito T.
        • Hanabuchi S.
        • Wang Y.-H.
        • Park W.R.
        • Arima K.
        • Bover L.
        • et al.
        Two functional subsets of FOXP3+ regulatory t cells in human thymus and periphery.
        Immunity. 2008; 28: 870-880
        • Woo E.Y.
        • Chu C.S.
        • Goletz T.J.
        • Schlienger K.
        • Yeh H.
        • Coukos G.
        • et al.
        Regulatory CD4 + CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.
        Cancer Res. 2001; 61: 4766-4772
        • Curiel T.J.
        • Coukos G.
        • Zou L.
        • Alvarez X.
        • Cheng P.
        • Mottram P.
        • et al.
        Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.
        Nat. Med. 2004; 10: 942-949
        • Adams S.F.
        • Levine D.A.
        • Cadungog M.G.
        • Hammond R.
        • Facciabene A.
        • Olvera N.
        • et al.
        Intraepithelial T cells and tumor proliferation.
        Cancer. 2009; 115: 2891-2902
        • Barnett J.C.
        • Bean S.M.
        • Whitaker R.S.
        • Kondoh E.
        • Baba T.
        • Fujii S.
        • et al.
        Ovarian cancer tumor infiltrating T-regulatory (Treg) cells are associated with a metastatic phenotype.
        Gynecol. Oncol. 2010; 116: 556-562
        • Karanikas V.
        • Speletas M.
        • Zamanakou M.
        • Kalala F.
        • Loules G.
        • Kerenidi T.
        • et al.
        Foxp3 expression in human cancer cells.
        J. Transl. Med. 2008; 6: 19
        • Roncarolo M.-G.
        • Gregori S.
        Is FOXP3 a bona fide marker for human regulatory T cells?.
        Eur. J. Immunol. 2008; 38: 925-927
        • Curiel T.J.
        • Wei S.
        • Dong H.
        • Alvarez X.
        • Cheng P.
        • Mottram P.
        • et al.
        Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity.
        Nat. Med. 2003; 9: 562-567
        • Krempski J.
        • Karyampudi L.
        • Behrens M.D.
        • Erskine C.L.
        • Hartmann L.
        • Dong H.
        • et al.
        Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer.
        J. Immunol. 2011; 186: 6905-6913
        • Conrad C.
        • Gregorio J.
        • Wang Y.-H.
        • Ito T.
        • Meller S.
        • Hanabuchi S.
        • et al.
        Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3+ T-regulatory cells.
        Cancer Res. 2012; 72: 5240-5249
        • Curiel T.J.
        • Cheng P.
        • Mottram P.
        • Alvarez X.
        • Moons L.
        • Evdemon-Hogan M.
        • et al.
        Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer.
        Cancer Res. 2004; 64: 5535-5538
        • Labidi-Galy S.I.
        • Sisirak V.
        • Meeus P.
        • Gobert M.
        • Treilleux I.
        • Bajard A.
        • et al.
        Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer.
        Cancer Res. 2011; 71: 5423-5434
        • Colvin E.K.
        Tumor associated macrophages contribute to tumor progression in ovarian cancer.
        Front. Oncol. 2014; 4
        • Mantovani A.
        • Sica A.
        Macrophages, innate immunity and cancer: balance, tolerance, and diversity.
        Curr. Opin. Immunol. 2010; 22: 231-237
        • Hagemann T.
        • Wilson J.
        • Burke F.
        • Kulbe H.
        • Li N.F.
        • Plüddemann A.
        • et al.
        Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype.
        J. Immunol. 2006; 176: 5023-5032
        • Takaishi K.
        • Komohara Y.
        • Tashiro H.
        • Ohtake H.
        • Nakagawa T.
        • Katabuchi H.
        • et al.
        Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation.
        Cancer Sci. 2010; 101: 2128-2136
        • Kawamura K.
        • Komohara Y.
        • Takaishi K.
        • Katabuchi H.
        • Takeya M.
        Detection of M2 macrophages and colony‐stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors.
        Pathol. Int. 2009; 59: 300-305
        • Kryczek I.
        • Wei S.
        • Zou L.
        • Zhu G.
        • Mottram P.
        • Xu H.
        • et al.
        Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells.
        J. Immunol. 2006; 177: 40-44
        • Kryczek I.
        • Zou L.
        • Rodriguez P.
        • Zhu G.
        • Wei S.
        • Mottram P.
        • et al.
        B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma.
        J. Exp. Med. 2006; 203: 871-881
        • Disis M.L.
        • Goodell V.
        • Schiffman K.
        • Knutson K.L.
        Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients.
        J. Clin. Immunol. 2004; 24: 571-578
        • Leffers N.
        • Lambeck A.J.A.
        • Gooden M.J.M.
        • Hoogeboom B.-N.
        • Wolf R.
        • Hamming I.E.
        • et al.
        Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial.
        Int. J. Cancer. 2009; 125: 2104-2113
        • Rahma O.
        • Ashtar E.
        • Czystowska M.
        • Szajnik M.
        • Wieckowski E.
        • Bernstein S.
        • et al.
        A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients.
        Cancer Immunol. Immunother. 2012; 61: 373-384
        • Diefenbach C.S.M.
        • Gnjatic S.
        • Sabbatini P.
        • Aghajanian C.
        • Hensley M.L.
        • Spriggs D.R.
        • et al.
        Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission.
        Clin. Cancer Res. 2008; 14: 2740-2748
        • Sabbatini P.
        • Tsuji T.
        • Ferran L.
        • Ritter E.
        • Sedrak C.
        • Tuballes K.
        • et al.
        Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients.
        Clin. Cancer Res. 2012; 18: 6497-6508
        • Odunsi K.
        • Matsuzaki J.
        • Karbach J.
        • Neumann A.
        • Mhawech-Fauceglia P.
        • Miller A.
        • et al.
        Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients.
        Proc. Natl. Acad. Sci. 2012; 109: 5797-5802
        • Freedman R.S.
        • Edwards C.L.
        • Kavanagh J.J.
        • Kudelka A.P.
        • Katz R.L.
        • Carrasco C.H.
        • et al.
        Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor-infiltrating lymphocytes and low-dose recombinant interleukin-2: a pilot trial.
        J. Immunother. 1994; 16: 198-210
        • Aoki Y.
        • Takakuwa K.
        • Kodama S.
        • Tanaka K.
        • Takahashi M.
        • Tokunaga A.
        • et al.
        Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer.
        Cancer Res. 1991; 51: 1934-1939
        • Santin A.D.
        • Bellone S.
        • Ravaggi A.
        • Pecorelli S.
        • Cannon M.J.
        • Parham G.P.
        Induction of ovarian tumor-specific CD8+ cytotoxic T lymphocytes by acid-eluted peptide-pulsed autologous dendritic cells.
        Obstet. Gynecol. 2000; 96: 422-430
        • Santin A.D.
        • Bellone S.
        • Palmieri M.
        • Bossini B.
        • Cane S.
        • Bignotti E.
        • et al.
        Restoration of tumor specific human leukocyte antigens class I-restricted cytotoxicity by dendritic cell stimulation of tumor infiltrating lymphocytes in patients with advanced ovarian cancer.
        Int. J. Gynecol. Cancer. 2004; 14: 64-75
        • Fujita K.
        • Ikarashi H.
        • Takakuwa K.
        • Kodama S.
        • Tokunaga A.
        • Takahashi T.
        • et al.
        Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes.
        Clin. Cancer Res. 1995; 1: 501-507
        • Restifo N.P.
        • Dudley M.E.
        • Rosenberg S.A.
        Adoptive immunotherapy for cancer: harnessing the T cell response.
        Nat. Rev. Immunol. 2012; 12: 269-281
        • Parker L.L.
        • Do M.T.
        • Westwood J.A.
        • Wunderlich J.R.
        • Dudley M.E.
        • Rosenberg S.A.
        • et al.
        Expansion and characterization of T cells transduced with a chimeric receptor against ovarian cancer.
        Hum. Gene Ther. 2000; 11: 2377-2387
        • Kershaw M.H.
        • Westwood J.A.
        • Parker L.L.
        • Wang G.
        • Eshhar Z.
        • Mavroukakis S.A.
        • et al.
        A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer.
        Clin. Cancer Res. 2006; 12: 6106-6115
        • Kandalaft L.E.
        • Powell Jr., D.J.
        • Coukos G.
        A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer.
        J. Transl. Med. 2012; 10: 157
        • Merad M.
        • Sathe P.
        • Helft J.
        • Miller J.
        • Mortha A.
        The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting.
        Annu. Rev. Immunol. 2013; 31
        • Brossart P.
        • Wirths S.
        • Stuhler G.
        • Reichardt V.L.
        • Kanz L.
        • Brugger W.
        Induction of Cytotoxic T-lymphocyte Responses in vivo After Vaccinations With Peptide-pulsed Dendritic Cells.
        2000
        • Hernando J.
        • Park T.-W.
        • Kübler K.
        • Offergeld R.
        • Schlebusch H.
        • Bauknecht T.
        Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial.
        Cancer Immunol. Immunother. 2002; 51: 45-52
        • Peethambaram P.P.
        • Melisko M.E.
        • Rinn K.J.
        • Alberts S.R.
        • Provost N.M.
        • Jones L.A.
        • et al.
        A phase I trial of immunotherapy with Lapuleucel-T (APC8024) in patients with refractory metastatic tumors that express HER-2/neu.
        Clin. Cancer Res. 2009; 15: 5937-5944
        • Chu C.S.
        • Boyer J.
        • Schullery D.S.
        • Gimotty P.A.
        • Gamerman V.
        • Bender J.
        • et al.
        Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission.
        Cancer Immunol. Immunother. 2012; 61: 629-641
        • Kandalaft L.E.
        • Powell Jr., D.J.
        • Chiang C.L.
        • Tanyi J.
        • Kim S.
        • Bosch M.
        • et al.
        Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer.
        Oncoimmunology. 2013; 2
        • Adorno-Cruz V.
        • Kibria G.
        • Liu X.
        • Doherty M.
        • Junk D.J.
        • Guan D.
        • et al.
        Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance.
        Cancer Res. 2015 Jan 20; ([Epub ahead of print])
        • Liao J.
        • Qian F.
        • Tchabo N.
        • Mhawech-Fauceglia P.
        • Beck A.
        • Qian Z.
        • et al.
        Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism.
        PLoS ONE. 2014; 9: e84941
        • Jones R.J.
        • Matsui W.
        Cancer stem cells: from bench to bedside.
        Biol. Blood Marrow Transplant. 2007; 13: 47-52
        • Kaiser J.
        The cancer stem cell gamble.
        Science. 2015; 347: 226-229
        • Di J.
        • Duiveman-de Boer T.
        • Zusterzeel P.L.
        • Figdor C.G.
        • Massuger L.F.
        • Torensma R.
        The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients.
        Cell. Oncol. 2013; 36: 363-374
        • Di J.
        • Massuger L.F.
        • Duiveman-de Boer T.
        • Zusterzeel P.L.
        • Figdor C.G.
        • Torensma R.
        Functional OCT4-specific CD4 and CD8 T cells in healthy controls and ovarian cancer patients.
        Oncoimmunology. 2013; 2: e24271
        • Tothill R.W.
        • Tinker A.V.
        • George J.
        • Brown R.
        • Fox S.B.
        • Lade S.
        • et al.
        Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.
        Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008; 14: 5198-5208
        • Cancer Genome Atlas Research N
        Integrated genomic analyses of ovarian carcinoma.
        Nature. 2011; 474: 609-615