Advertisement
Research Article| Volume 130, ISSUE 3, P579-587, September 2013

Download started.

Ok

Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression

      Highlights

      • Cancer stem cells appear to be directly targeted by use of an antibody against CD133.
      • An anti-CD133 targeted toxin, dCD133KDEL, shows promise for ovarian cancer therapy.
      • dCD133KDEL inhibits growth of ovarian carcinoma in vitro and in vivo in a mouse model.

      Abstract

      Objectives

      While most women with ovarian cancer will achieve complete remission after treatment, the majority will relapse within two years, highlighting the need for novel therapies. Cancer stem cells (CSC) have been identified in ovarian cancer and most other carcinomas as a small population of cells that can self-renew. CSC are more chemoresistant and radio-resistant than the bulk tumor cells; it is likely that CSC are responsible for relapse, the major problem in cancer treatment. CD133 has emerged as one of the most promising markers for CSC in ovarian cancer. The hypothesis driving this study is that despite their low numbers in ovarian cancer tumors, CSC can be eradicated using CD133 targeted therapy and tumor growth can be inhibited.

      Methods

      Ovarian cancer cell lines were evaluated using flow cytometry for expression of CD133. In vitro viability studies with an anti-CD133 targeted toxin were performed on one of the cell lines, NIH:OVCAR5. The drug was tested in vivo using a stably transfected luciferase-expressing NIH:OVCAR5 subline in nude mice, so that tumor growth could be monitored by digital imaging in real time.

      Results

      Ovarian cancer cell lines showed 5.6% to 16.0% CD133 expression. dCD133KDEL inhibited the in vitro growth of NIH:OVCAR5 cells. Despite low numbers of CD133-expressing cells in the tumor population, intraperitoneal drug therapy caused a selective decrease in tumor progression in intraperitoneal NIH:OVCAR5-luc tumors.

      Conclusions

      Directly targeting CSC that are a major cause of drug resistant tumor relapse with an anti-CD133 targeted toxin shows promise for ovarian cancer therapy.

      Abbreviations:

      dCD133KDEL (deimmunized pseudomonas exotoxin fused to anti-CD133 scFv with a KDEL terminus), aa (amino acid), Ab (antibody), CD19 (cluster of differentiation 19), CD45 (cluster of differentiation 45), ER (endoplasmic reticulum), FITC (fluorescein isothiocyanate), KDEL (Lys-Asp-Glu-Leu), mAb (monoclonal antibody), PE (pseudomonas exotoxin), photons/s/cm2/sr (photons per second per square centimeter per steradian), scFv (recombinant single chain VH and VL domain)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ozols R.F.
        Treatment goals in ovarian cancer.
        Int J Gynecol Cancer. 2005; 15: 3-11
        • Jemal A.
        • Siegel R.
        • Ward E.
        • Hao Y.
        • Xu J.
        • Murray T.
        • et al.
        Cancer statistics, 2008.
        CA Cancer J Clin. 2008; 58: 71-96
        • Cho R.W.
        • Clarke M.F.
        Recent advances in cancer stem cells.
        Curr Opin Genet Dev. 2008; 18: 48-53
        • Visvader J.E.
        • Lindeman G.J.
        Cancer stem cells in solid tumours: accumulating evidence and unresolved questions.
        Nat Rev Cancer. 2008; 8: 755-768
        • Dean M.
        • Fojo T.
        • Bates S.
        Tumour stem cells and drug resistance.
        Nat Rev Cancer. 2005; 5: 275-284
        • Hu L.
        • McArthur C.
        • Jaffe R.B.
        Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant.
        Br J Cancer. 2010; 102: 1276-1283
        • Neuzil J.
        • Stantic M.
        • Zobalova R.
        • Chladova J.
        • Wang X.
        • Prochazka L.
        • et al.
        Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what's in the name?.
        Biochem Biophys Res Commun. 2007; 355: 855-859
        • Taieb N.
        • Maresca M.
        • Guo X.J.
        • Garmy N.
        • Fantini J.
        • Yahi N.
        The first extracellular domain of the tumour stem cell marker CD133 contains an antigenic ganglioside-binding motif.
        Cancer Lett. 2009; 278: 164-173
        • Shmelkov S.V.
        • St Clair R.
        • Lyden D.
        • Rafii S.
        AC133/CD133/prominin-1.
        Int J Biochem Cell Biol. 2005; 37: 715-719
        • Bauer N.
        • Fonseca A.V.
        • Florek M.
        • Freund D.
        • Jaszai J.
        • Bornhauser M.
        • et al.
        New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133).
        Cells Tissues Organs. 2008; 188: 127-138
        • Ulasov I.V.
        • Nandi S.
        • Dey M.
        • Sonabend A.M.
        • Lesniak M.S.
        Inhibition of sonic hedgehog and notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy.
        Mol Med. 2011; 17: 103-112
        • Evangelista M.
        • Tian H.
        • de Sauvage F.J.
        The hedgehog signaling pathway in cancer.
        Clin Cancer Res. 2006; 12: 5924-5928
        • Wu Y.
        • Wu P.Y.
        CD133 as a marker for cancer stem cells: progresses and concerns.
        Stem Cells Dev. 2009; 18: 1127-1134
        • Wu A.
        • Oh S.
        • Wiesner S.M.
        • Ericson K.
        • Chen L.
        • Hall W.A.
        • et al.
        Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties.
        Stem Cells Dev. 2008; 17: 173-184
        • Ailles L.E.
        • Weissman I.L.
        Cancer stem cells in solid tumors.
        Curr Opin Biotechnol. 2007; 18: 460-466
        • O'Brien C.A.
        • Pollett A.
        • Gallinger S.
        • Dick J.E.
        A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.
        Nature. 2007; 445: 106-110
        • Wright M.H.
        • Calcagno A.M.
        • Salcido C.D.
        • Carlson M.D.
        • Ambudkar S.V.
        • Varticovski L.
        Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics.
        Breast Cancer Res. 2008; 10: R10
        • Horst D.
        • Kriegl L.
        • Engel J.
        • Kirchner T.
        • Jung A.
        CD133 expression is an independent prognostic marker for low survival in colorectal cancer.
        Br J Cancer. 2008; 99: 1285-1289
        • Bapat S.A.
        • Mali A.M.
        • Koppikar C.B.
        • Kurrey N.K.
        Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer.
        Cancer Res. 2005; 65: 3025-3029
        • Alvero A.B.
        • Chen R.
        • Fu H.H.
        • Montagna M.
        • Schwartz P.E.
        • Rutherford T.
        • et al.
        Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance.
        Cell Cycle. 2009; 8: 158-166
        • Baba T.
        • Convery P.A.
        • Matsumura N.
        • Whitaker R.S.
        • Kondoh E.
        • Perry T.
        • et al.
        Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells.
        Oncogene. 2009; 28: 209-218
        • Curley M.D.
        • Garrett L.A.
        • Schorge J.O.
        • Foster R.
        • Rueda B.R.
        Evidence for cancer stem cells contributing to the pathogenesis of ovarian cancer.
        Front Biosci. 2011; 16: 368-392
        • Curley M.D.
        • Therrien V.A.
        • Cummings C.L.
        • Sergent P.A.
        • Koulouris C.R.
        • Friel A.M.
        • et al.
        CD133 expression defines a tumor initiating cell population in primary human ovarian cancer.
        Stem Cells. 2009; 27: 2875-2883
        • Ferrandina G.
        • Martinelli E.
        • Petrillo M.
        • Prisco M.G.
        • Zannoni G.
        • Sioletic S.
        • et al.
        CD133 antigen expression in ovarian cancer.
        BMC Cancer. 2009; 9: 221
        • Fong M.Y.
        • Kakar S.S.
        The role of cancer stem cells and the side population in epithelial ovarian cancer.
        Histol Histopathol. 2010; 25: 113-120
        • Kryczek I.
        • Liu S.
        • Roh M.
        • Vatan L.
        • Szeliga W.
        • Wei S.
        • et al.
        Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells.
        Int J Cancer. 2011; 130: 29-39
        • Silva I.A.
        • Bai S.
        • McLean K.
        • Yang K.
        • Griffith K.
        • Thomas D.
        • et al.
        Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival.
        Cancer Res. 2011; 71: 3991-4001
        • Stewart J.M.
        • Shaw P.A.
        • Gedye C.
        • Bernardini M.Q.
        • Neel B.G.
        • Ailles L.E.
        Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells.
        Proc Natl Acad Sci U S A. 2011; 108: 6468-6473
        • Zhang S.
        • Balch C.
        • Chan M.W.
        • Lai H.C.
        • Matei D.
        • Schilder J.M.
        • et al.
        Identification and characterization of ovarian cancer-initiating cells from primary human tumors.
        Cancer Res. 2008; 68: 4311-4320
        • Kreitman R.J.
        • Pastan I.
        Accumulation of a recombinant immunotoxin in a tumor in vivo: fewer than 1000 molecules per cell are sufficient for complete responses.
        Cancer Res. 1998; 58: 968-975
        • Fujisawa T.
        • Nakashima H.
        • Nakajima A.
        • Joshi B.H.
        • Puri R.K.
        Targeting IL-13Ralpha2 in human pancreatic ductal adenocarcinoma with combination therapy of IL-13-PE and gemcitabine.
        Int J Cancer. 2010; 128: 1221-1231
        • Herrera L.
        • Stanciu-Herrera C.
        • Morgan C.
        • Ghetie V.
        • Vitetta E.S.
        Anti-CD19 immunotoxin enhances the activity of chemotherapy in severe combined immunodeficient mice with human pre-B acute lymphoblastic leukemia.
        Leuk Lymphoma. 2006; 47: 2380-2387
        • Webb K.S.
        • Liberman S.N.
        • Ware J.L.
        • Walther P.J.
        In vitro synergism between hybrid immunotoxins and chemotherapeutic drugs: relevance to immunotherapy of prostate carcinoma.
        Cancer Immunol Immunother. 1986; 21: 100-106
        • Bidlingmaier S.
        • Zhu X.
        • Liu B.
        The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells.
        J Mol Med. 2008; 86: 1025-1032
        • Kemper K.
        • Sprick M.R.
        • de Bree M.
        • Scopelliti A.
        • Vermeulen L.
        • Hoek M.
        • et al.
        The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.
        Cancer Res. 2010; 70: 719-729
        • Swaminathan S.K.
        • Olin M.R.
        • Forster C.L.
        • Cruz K.S.
        • Panyam J.
        • Ohlfest J.R.
        Identification of a novel monoclonal antibody recognizing CD133.
        J Immunol Methods. 2010; 361: 110-115
        • Mathew M.
        • Verma R.S.
        Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy.
        Cancer Sci. 2009; 100: 1359-1365
        • Onda M.
        • Beers R.
        • Xiang L.
        • Nagata S.
        • Wang Q.C.
        • Pastan I.
        An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes.
        Proc Natl Acad Sci U S A. 2008; 105: 11311-11316
        • Onda M.
        • Nagata S.
        • FitzGerald D.J.
        • Beers R.
        • Fisher R.J.
        • Vincent J.J.
        • et al.
        Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients.
        J Immunol. 2006; 177: 8822-8834
        • Stish B.J.
        • Chen H.
        • Shu Y.
        • Panoskaltsis-Mortari A.
        • Vallera D.A.
        A bispecific recombinant cytotoxin (DTEGF13) targeting human interleukin-13 and epidermal growth factor receptors in a mouse xenograft model of prostate cancer.
        Clin Cancer Res. 2007; 13: 6486-6493
        • Stish B.J.
        • Chen H.
        • Shu Y.
        • Panoskaltsis-Mortari A.
        • Vallera D.A.
        Increasing anticarcinoma activity of an anti-erbB2 recombinant immunotoxin by the addition of an anti-EpCAM sFv.
        Clin Cancer Res. 2007; 13: 3058-3067
        • Stish B.J.
        • Oh S.
        • Vallera D.A.
        Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human IL-13 and EGF receptors in a mouse xenograft model.
        J Neurooncol. 2008; 87: 51-61
        • Tsai A.K.
        • Oh S.
        • Chen H.
        • Shu Y.
        • Ohlfest J.R.
        • Vallera D.A.
        A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature.
        J Neurooncol. 2011; 103: 255-266
        • Vallera D.A.
        • Chen H.
        • Sicheneder A.R.
        • Panoskaltsis-Mortari A.
        • Taras E.P.
        Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy.
        Leuk Res. 2009; 33: 1233-1242
        • Vallera D.A.
        • Stish B.J.
        • Shu Y.
        • Chen H.
        • Saluja A.
        • Buchsbaum D.J.
        • et al.
        Genetically designing a more potent antipancreatic cancer agent by simultaneously co-targeting human IL13 and EGF receptors in a mouse xenograft model.
        Gut. 2008; 57: 634-641
        • Vallera D.A.
        • Todhunter D.A.
        • Kuroki D.W.
        • Shu Y.
        • Sicheneder A.
        • Chen H.
        A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma.
        Clin Cancer Res. 2005; 11: 3879-3888
        • Kreitman R.J.
        Recombinant immunotoxins for the treatment of chemoresistant hematologic malignancies.
        Curr Pharm Des. 2009; 15: 2652-2664
        • Waldron N.N.
        • Kaufman D.S.
        • Oh S.
        • Inde Z.
        • Hexum M.K.
        • Ohlfest J.R.
        • et al.
        Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer.
        Mol Cancer Ther. 2011; 10: 1829-1838
        • Ohlfest J.
        • Zellmer D.
        • Panyam J.
        • Swaminathan S.
        • Oh S.
        • Waldron N.
        • et al.
        Immunotoxin targeting CD133+ breast carcinoma cells.
        Drug Deliv Transl Res. 2012; : 1-10
        • Molpus K.L.
        • Koelliker D.
        • Atkins L.
        • Kato D.T.
        • Buczek-Thomas J.
        • Fuller Jr., A.F.
        • et al.
        Characterization of a xenograft model of human ovarian carcinoma which produces intraperitoneal carcinomatosis and metastases in mice.
        Int J Cancer. 1996; 68: 588-595
        • Shaw T.J.
        • Senterman M.K.
        • Dawson K.
        • Crane C.A.
        • Vanderhyden B.C.
        Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer.
        Mol Ther. 2004; 10: 1032-1042
        • Subramanian I.V.
        • Bui Nguyen T.M.
        • Truskinovsky A.M.
        • Tolar J.
        • Blazar B.R.
        • Ramakrishnan S.
        Adeno-associated virus-mediated delivery of a mutant endostatin in combination with carboplatin treatment inhibits orthotopic growth of ovarian cancer and improves long-term survival.
        Cancer Res. 2006; 66: 4319-4328
        • Waldron N.N.
        • Oh S.
        • Vallera D.A.
        Bispecific targeting of EGFR and uPAR in a mouse model of head and neck squamous cell carcinoma.
        Oral Oncol. 2012; 48: 1202-1207
        • Vallera D.A.
        • Elson M.
        • Brechbiel M.W.
        • Dusenbery K.E.
        • Burns L.J.
        • Jaszcz W.B.
        • et al.
        Radiotherapy of CD19 expressing Daudi tumors in nude mice with yttrium-90-labeled anti-CD19 antibody.
        Cancer Biother Radiopharm. 2004; 19: 11-23
        • Vallera D.A.
        • Panoskaltsis-Mortari A.
        • Blazar B.R.
        Renal dysfunction accounts for the dose limiting toxicity of DT390anti-CD3sFv, a potential new recombinant anti-GVHD immunotoxin.
        Protein Eng. 1997; 10: 1071-1076
        • Dallas N.A.
        • Xia L.
        • Fan F.
        • Gray M.J.
        • Gaur P.
        • van Buren II, G.
        • et al.
        Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition.
        Cancer Res. 2009; 69: 1951-1957
        • Fabrizi E.
        • di Martino S.
        • Pelacchi F.
        • Ricci-Vitiani L.
        Therapeutic implications of colon cancer stem cells.
        World J Gastroenterol. 2010; 16: 3871-3877
        • Boman B.M.
        • Wicha M.S.
        Cancer stem cells: a step toward the cure.
        J Clin Oncol. 2008; 26: 2795-2799
        • Eyler C.E.
        • Rich J.N.
        Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis.
        J Clin Oncol. 2008; 26: 2839-2845
        • Hassan R.
        • Broaddus V.C.
        • Wilson S.
        • Liewehr D.J.
        • Zhang J.
        Anti-mesothelin immunotoxin SS1P in combination with gemcitabine results in increased activity against mesothelin-expressing tumor xenografts.
        Clin Cancer Res. 2007; 13: 7166-7171
        • Pearson J.W.
        • Sivam G.
        • Manger R.
        • Wiltrout R.H.
        • Morgan Jr., A.C.
        • Longo D.L.
        Enhanced therapeutic efficacy of an immunotoxin in combination with chemotherapy against an intraperitoneal human tumor xenograft in athymic mice.
        Cancer Res. 1989; 49: 4990-4995
        • Kusumbe A.P.
        • Mali A.M.
        • Bapat S.A.
        CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature.
        Stem Cells. 2009; 27: 498-508
        • Olin M.R.
        • Andersen B.M.
        • Litterman A.J.
        • Grogan P.T.
        • Sarver A.L.
        • Robertson P.T.
        • et al.
        Oxygen is a master regulator of the immunogenicity of primary human glioma cells.
        Cancer Res. 2011; 71: 6583-6589
        • Steg A.D.
        • Bevis K.S.
        • Katre A.A.
        • Ziebarth A.
        • Dobbin Z.C.
        • Alvarez R.D.
        • et al.
        Stem cell pathways contribute to clinical chemoresistance in ovarian cancer.
        Clin Cancer Res. 2012; 18: 869-881
        • Marjanovic N.D.
        • Weinberg R.A.
        • Chaffer C.L.
        Cell plasticity and heterogeneity in cancer.
        Clin Chem. 2013; 59: 168-179
        • Pardal R.
        • Clarke M.F.
        • Morrison S.J.
        Applying the principles of stem-cell biology to cancer.
        Nat Rev Cancer. 2003; 3: 895-902
        • Grosse-Gehling P.
        • Fargeas C.A.
        • Dittfeld C.
        • Garbe Y.
        • Alison M.R.
        • Corbeil D.
        • et al.
        CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges.
        J Pathol. 2013; 229: 355-378
        • Ahmed N.
        • Abubaker K.
        • Findlay J.
        • Quinn M.
        Cancerous ovarian stem cells: obscure targets for therapy but relevant to chemoresistance.
        J Cell Biochem. 2013; 114: 21-34
        • Swaminathan S.K.
        • Niu L.
        • Waldron N.
        • Kalscheuer S.
        • Zellmer D.M.
        • Olin M.R.
        • et al.
        Identification and characterization of a novel scFv recognizing human and mouse CD133.
        Drug Deliv Transl Res. 2013; 3: 143-151
        • Smith L.M.
        • Nesterova A.
        • Ryan M.C.
        • Duniho S.
        • Jonas M.
        • Anderson M.
        • et al.
        CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers.
        Br J Cancer. 2008; 99: 100-109