Advertisement

Hereditary ovarian cancer: Beyond the usual suspects

      Abstract

      In the past, hereditary ovarian carcinoma was attributed almost entirely to mutations in BRCA1 and BRCA2, with a much smaller contribution from mutations in DNA mismatch repair genes. Recently, three new ovarian cancer susceptibility genes have been identified: RAD51C, RAD51D, and BRIP1. In addition, germline mutations in women with ovarian carcinoma have been recently identified in many of the previously identified breast cancer genes in the Fanconi anemia (FA)–BRCA pathway. While mutations in genes other than BRCA1 and BRCA2 are each individually rare, together they make up a significant proportion of cases. With at least 16 genes implicated in hereditary ovarian cancer to date, comprehensive testing for ovarian cancer risk will require assessment of many genes. As the cost of genomic sequencing continues to fall, the practice of evaluating cancer susceptibility one gene at a time is rapidly becoming obsolete. New advances in genomic technologies will likely accelerate the discovery of additional cancer susceptibility genes and increase the feasibility of comprehensive evaluation of multiple genes simultaneously at low cost. Improved recognition of inherited risk will identify individuals who are candidates for targeted prevention. In addition, identifying inherited mutations in a variety of FA–BRCA pathway genes may aid in identifying individuals who will selectively benefit from PARP inhibitors.

      Highlights

      • Newly identified hereditary ovarian cancer genes include RAD51C, RAD51D, and BRIP1.
      • Many genes in the Fanconi anemia–BRCA pathway may increase risk of ovarian cancer.
      • New genomic technologies make comprehensive genetic assessment feasible.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Loveday C.
        • Turnbull C.
        • Ramsay E.
        • Hughes D.
        • Ruark E.
        • Frankum J.R.
        • et al.
        Germline mutations in RAD51D confer susceptibility to ovarian cancer.
        Nat Genet. 2011; 43: 879-882
        • Meindl A.
        • Hellebrand H.
        • Wiek C.
        • Erven V.
        • Wappenschmidt B.
        • Niederacher D.
        • et al.
        Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene.
        Nat Genet. 2010; 42: 410-414
        • Rafnar T.
        • Gudbjartsson D.F.
        • Sulem P.
        • Jonasdottir A.
        • Sigurdsson A.
        • Jonasdottir A.
        • et al.
        Mutations in BRIP1 confer high risk of ovarian cancer.
        Nat Genet. 2011; 43: 1104-1107
        • D'Andrea A.D.
        Susceptibility pathways in Fanconi's anemia and breast cancer.
        N Engl J Med. 2010; 362: 1909-1919
        • Rebbeck T.R.
        • Kauff N.D.
        • Domchek S.M.
        Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA1 mutation carriers.
        J Natl Cancer Inst. 2009; 101: 80-87
        • Zhang S.
        • Royer R.
        • Li S.
        • McLaughlin J.R.
        • Rosen B.
        • Risch H.A.
        • et al.
        Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer.
        Gynecol Oncol. 2011; 121: 353-357
        • Pal T.
        • Permuth-Wey J.
        • Betts J.A.
        • Krischer J.P.
        • Fiorica J.
        • Arango H.
        • et al.
        BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases.
        Cancer. 2005; 104: 2807-2816
        • Roa B.B.
        • Boyd A.A.
        • Volcik K.
        • Richards C.S.
        Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2.
        Nat Genet. 1996; 14: 185-187
        • Oddoux C.
        • Struewing J.P.
        • Clayton C.M.
        • Neuhausen S.
        • Brody L.C.
        • Kaback M.
        • et al.
        The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%.
        Nat Genet. 1996; 14: 188-190
        • Struewing J.P.
        • Abeliovich D.
        • Peretz T.
        • Avishai N.
        • Kaback M.M.
        • Collins F.S.
        • et al.
        The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals.
        Nat Genet. 1995; 11: 198-200
        • Levy-Lahad E.
        • Catane R.
        • Eisenberg S.
        • Kaufman B.
        • Hornreich G.
        • Lishinsky E.
        • et al.
        Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families.
        Am J Hum Genet. 1997; 60: 1059-1067
        • Moslehi R.
        • Chu W.
        • Karlan B.
        • Fishman D.
        • Risch H.
        • Fields A.
        • et al.
        BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer.
        Am J Hum Genet. 2000; 66: 1259-1272
        • Hirsh-Yechezkel G.
        • Chetrit A.
        • Lubin F.
        • Friedman E.
        • Peretz T.
        • Gershoni R.
        • et al.
        Population attributes affecting the prevalence of BRCA mutation carriers in epithelial ovarian cancer cases in Israel.
        Gynecol Oncol. 2003; 89: 494-498
        • King M.C.
        • Marks J.H.
        • Mandell J.B.
        • New York Breast Cancer Study Group
        Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2.
        Science. 2003; 302: 643-646
        • Antoniou A.
        • Pharoah P.D.
        • Narod S.
        • Risch H.A.
        • Eyfjord J.E.
        • Hopper J.L.
        • et al.
        Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies.
        Am J Hum Genet. 2003; 72: 1117-1130
        • Boyd J.
        • Sonoda Y.
        • Federici M.G.
        • Bogomolniy F.
        • Rhei E.
        • Maresco D.L.
        • et al.
        Clinicopathologic features of BRCA-linked and sporadic ovarian cancer.
        JAMA. 2000; 283: 2260-2265
        • Ford D.
        • Easton D.F.
        • Stratton M.
        • Narod S.
        • Goldgar D.
        • Devilee P.
        • et al.
        Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium.
        Am J Hum Genet. 1998; 62: 676-689
        • Lakhani S.R.
        • Manek S.
        • Penault-Llorca F.
        • Flanagan A.
        • Arnout L.
        • Merrett S.
        • et al.
        Pathology of ovarian cancers in BRCA1 and BRCA2 carriers.
        Clin Cancer Res. 2004; 10: 2473-2481
        • Walsh T.
        • Casadei S.
        • Lee M.K.
        • Pennil C.C.
        • Nord A.S.
        • Thornton A.M.
        • et al.
        Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing.
        Proc Natl Acad Sci USA. 2011; 108: 18032-18037
        • Risch H.A.
        • McLaughlin J.R.
        • Cole D.E.
        • Rosen B.
        • Bradley L.
        • Kwan E.
        • et al.
        Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer.
        Am J Hum Genet. 2001; 68: 700-710
        • Werness B.A.
        • Ramus S.J.
        • DiCioccio R.A.
        • Whittemore A.S.
        • Garlinghouse-Jones K.
        • Oakley-Girvan I.
        • et al.
        Histopathology, FIGO stage, and BRCA mutation status of ovarian cancers from the Gilda Radner Familial Ovarian Cancer Registry.
        Int J Gynecol Pathol. 2004; 23: 29-34
        • Chetrit A.
        • Hirsh-Yechezkel G.
        • Ben-David Y.
        • Lubin F.
        • Friedman E.
        • Sadetzki S.
        Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer.
        J Clin Oncol. 2008; 26: 20-25
        • Yang D.
        • Khan S.
        • Sun Y.
        • Hess K.
        • Shmulevich I.
        • Sood A.K.
        • et al.
        Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer.
        JAMA. 2011; 306: 1557-1565
        • Vencken P.M.
        • Kriege M.
        • Hoogwerf D.
        • Beugelink S.
        • van der Burg M.E.
        • Hooning M.J.
        • et al.
        Chemosensitivity and outcome of BRCA1- and BRCA2-associated ovarian cancer patients after first-line chemotherapy compared with sporadic ovarian cancer patients.
        Ann Oncol. 2011; 22: 1346-1352
        • Fong P.C.
        • Boss D.S.
        • Yap T.A.
        • Tutt A.
        • Wu P.
        • Mergui-Roelvink M.
        • et al.
        Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers.
        N Engl J Med. 2009; 361: 123-134
        • Gad S.
        • Caux-Moncoutier V.
        • Pagès-Berhouet S.
        • Gauthier-Villars M.
        • Coupier I.
        • Pujol P.
        • et al.
        Significant contribution of large BRCA1 gene rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments.
        Oncogene. 2002; 21: 6841-6847
        • Puget N.
        • Stoppa-Lyonnet D.
        • Sinilnikova O.M.
        • Pages S.
        • Lynch H.T.
        • Lenoir G.M.
        • et al.
        Screening for germ-line rearrangements and regulatory mutations in BRCA1 led to the identification of four new deletions.
        Cancer Res. 1999; 59: 455-461
        • Walsh T.
        • Casadei S.
        • Coats K.H.
        • Swisher E.
        • Stray S.M.
        • Higgins J.
        • et al.
        Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer.
        JAMA. 2006; 295: 1379-1388
        • Unger M.A.
        • Nathanson K.L.
        • Calzone K.
        • Antin-Ozerkis D.
        • Shih H.A.
        • Martin A.M.
        • et al.
        Screening for genomic rearrangements in families with breast and ovarian cancer identifies BRCA1 mutations previously missed by conformation-sensitive gel electrophoresis or sequencing.
        Am J Hum Genet. 2000; 67: 841-850
        • Hogervorst F.B.
        • Nederlof P.M.
        • Gille J.J.
        • McElgunn C.J.
        • Grippeling M.
        • Pruntel R.
        • et al.
        Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method.
        Cancer Res. 2003; 63: 1449-1453
        • Hampel H.
        • Stephens J.A.
        • Pukkala E.
        • Sankila R.
        • Aaltonen L.A.
        • Mecklin J.P.
        • et al.
        Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset.
        Gastroenterology. 2005; 129: 415-421
        • Stoffel E.
        • Mukherjee B.
        • Raymond V.M.
        • Tayob N.
        • Kastrinos F.
        • Sparr J.
        • et al.
        Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome.
        Gastroenterology. 2009; 137: 1621-1627
        • Dunlop M.G.
        • Farrington S.M.
        • Carothers A.D.
        • Wyllie A.H.
        • Sharp L.
        • Burn J.
        • et al.
        Cancer risk associated with germline DNA mismatch repair gene mutations.
        Hum Mol Genet. 1997; 6: 105-110
        • Watson P.
        • Bützow R.
        • Lynch H.T.
        • Mecklin J.P.
        • Järvinen H.J.
        • Vasen H.F.
        • et al.
        The clinical features of ovarian cancer in hereditary nonpolyposis colorectal cancer.
        Gynecol Oncol. 2001; 82: 223-228
        • Weissman S.M.
        • Bellcross C.
        • Bittner C.C.
        • Freivogel M.E.
        • Haidle J.L.
        • Kaurah P.
        • et al.
        Genetic counseling considerations in the evaluation of families for Lynch syndrome—a review.
        J Genet Couns. 2011; 20: 5-19
        • Niessen R.C.
        • Hofstra R.M.
        • Westers H.
        • Ligtenberg M.J.
        • Kooi K.
        • Jager P.O.
        • et al.
        Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome.
        Genes Chromosomes Cancer. 2009; 48: 737-744
        • Auerbach A.D.
        Fanconi anemia and its diagnosis.
        Mutat Res. 2009; 668: 4-10
        • Taniguchi T.
        • D'Andrea A.D.
        Molecular pathogenesis of Fanconi anemia: recent progress.
        Blood. 2006; 107: 4223-4233
        • de Winter J.P.
        • Joenje H.
        The genetic and molecular basis of Fanconi anemia.
        Mutat Res. 2009; 668: 11-19
        • Kim Y.
        • Lach F.P.
        • Desetty R.
        • Hanenberg H.
        • Auerbach A.D.
        • Smogorzewska A.
        Mutations of the SLX4 gene in Fanconi anemia.
        Nat Genet. 2011; 43: 142-146
        • Stoepker C.
        • Hain K.
        • Schuster B.
        • Hilhorst-Hofstee Y.
        • Rooimans M.A.
        • Steltenpool J.
        • et al.
        SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype.
        Nat Genet. 2011; 43: 138-141
        • Howlett N.G.
        • Taniguchi T.
        • Olson S.
        • Cox B.
        • Waisfisz Q.
        • de Die-Smulders C.
        • et al.
        Biallelic inactivation of BRCA2 in Fanconi anemia.
        Science. 2002; 297: 606-609
        • Farmer H.
        • McCabe N.
        • Lord C.J.
        • Tutt A.N.
        • Johnson D.A.
        • Richardson T.B.
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921
        • McCabe N.
        • Turner N.C.
        • Lord C.J.
        • Kluzek K.
        • Bialkowska A.
        • Swift S.
        • et al.
        Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.
        Cancer Res. 2006; 66: 8109-8115
        • Swift M.
        • Chase C.L.
        • Morrell D.
        Cancer predisposition of ataxia–telangiectasia heterozygotes.
        Cancer Genet Cytogenet. 1990; 46: 21-27
        • Renwick A.
        • Thompson D.
        • Seal S.
        • Kelly P.
        • Chagtai T.
        • Ahmed M.
        • et al.
        ATM mutations that cause ataxia–telangiectasia are breast cancer susceptibility alleles.
        Nat Genet. 2006; 38: 873-875
        • Hsu H.M.
        • Wang H.C.
        • Chen S.T.
        • Hsu G.C.
        • Shen C.Y.
        • Yu J.C.
        Breast cancer risk is associated with the genes encoding the DNA double-strand break repair Mre11/Rad50/Nbs1 complex.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 2024-2032
        • Ghimenti C.
        • Sensi E.
        • Presciuttini S.
        • Brunetti I.M.
        • Conte P.
        • Bevilacqua G.
        • et al.
        Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations.
        Genes Chromosomes Cancer. 2002; 33: 235-242
        • Casadei S.
        • Norquist B.M.
        • Walsh T.
        • Stray S.
        • Mandell J.B.
        • Lee M.K.
        • et al.
        Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer.
        Cancer Res. 2011; 71: 2222-2229
        • CHEK2 Breast Cancer Case–Control Consortium
        CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies.
        Am J Hum Genet. 2004; 74: 1175-1182
        • Seal S.
        • Thompson D.
        • Renwick A.
        • Elliott A.
        • Kelly P.
        • Barfoot R.
        • et al.
        Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles.
        Nat Genet. 2006; 38: 1239-1241
        • Rahman N.
        • Seal S.
        • Thompson D.
        • Kelly P.
        • Renwick A.
        • Elliott A.
        • et al.
        PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene.
        Nat Genet. 2007; 39: 165-167
        • Dansonka-Mieszkowska A.
        • Kluska A.
        • Moes J.
        • Dabrowska M.
        • Nowakowska D.
        • Niwinska A.
        • et al.
        A novel germline PALB2 deletion in breast and ovarian cancer patients.
        BMC Med Genet. 2010; 11: 20-29
        • Vaz F.
        • Hanenberg H.
        • Schuster B.
        • Barker K.
        • Wiek C.
        • Erven V.
        • et al.
        Mutation of the RAD51C gene in a Fanconi anemia-like disorder.
        Nat Genet. 2010; 42: 406-409
        • Bolton K.L.
        • Tyrer J.
        • Song H.
        • Ramus S.J.
        • Notaridou M.
        • Jones C.
        • et al.
        Common variants at 19p13 are associated with susceptibility to ovarian cancer.
        Nat Genet. 2010; 42: 880-886
        • Goode E.L.
        • Chenevix-Trench G.
        • Song H.
        • Ramus S.J.
        • Notaridou M.
        • Lawrenson K.
        • et al.
        A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24.
        Nat Genet. 2010; 42: 874-881
        • Song H.
        • Ramus S.J.
        • Tyrer J.
        • Bolton K.L.
        • Gentry-Maharaj A.
        • Wozniak E.
        • et al.
        A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2.
        Nat Genet. 2009; 41: 996-1001
        • Goldstein D.B.
        Common genetic variation and human traits.
        N Engl J Med. 2009; 360: 1696-1698
        • McClellan J.
        • King M.C.
        Genetic heterogeneity in human disease.
        Cell. 2010; 141: 210-217
        • Broca P.
        Traité des Tumeurs.
        Asselin, Paris1866
        • Bergfeldt K.
        • Rydh B.
        • Granath F.
        • Grönberg H.
        • Thalib L.
        • Adami H.O.
        • et al.
        Risk of ovarian cancer in breast-cancer patients with a family history of breast or ovarian cancer: a population-based cohort study.
        Lancet. 2002; 360: 891-894
        • Kauff N.D.
        • Mitra N.
        • Robson M.E.
        • Hurley K.E.
        • Chuai S.
        • Goldfrank D.
        • et al.
        Risk of ovarian cancer in BRCA1 and BRCA2 mutation-negative hereditary breast cancer families.
        J Natl Cancer Inst. 2005; 97: 1382-1384
        • Meyerson M.
        • Gabriel S.
        • Getz G.
        Advances in understanding cancer genomes through second-generation sequencing.
        Nat Rev Genet. 2010; 11: 685-696
        • The Cancer Genome Atlas Research Network
        Integrated genomic analyses of ovarian carcinoma.
        Nature. 2011; 474: 609-615
        • Mazoyer S.
        • Dunning A.M.
        • Serova O.
        • Dearden J.
        • Puget N.
        • Healey C.S.
        • et al.
        A polymorphic stop codon in BRCA2.
        Nat Genet. 1996; 14: 253-254