Advertisement
Research Article| Volume 162, ISSUE 1, P107-112, July 2021

Download started.

Ok

Validation of American College of Radiology Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US): Analysis on 1054 adnexal masses

  • Author Footnotes
    1 Equal contributors
    Lan Cao
    Footnotes
    1 Equal contributors
    Affiliations
    Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
    Search for articles by this author
  • Author Footnotes
    1 Equal contributors
    Mingjie Wei
    Footnotes
    1 Equal contributors
    Affiliations
    Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
    Search for articles by this author
  • Ying Liu
    Affiliations
    Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
    Search for articles by this author
  • Juan Fu
    Affiliations
    Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
    Search for articles by this author
  • Honghuan Zhang
    Affiliations
    Department of Ultrasound, Jiangmen Central Hospital, Jiangmen, China
    Search for articles by this author
  • Jing Huang
    Affiliations
    Department of Ultrasound, Jiangmen Central Hospital, Jiangmen, China
    Search for articles by this author
  • Xiaoqing Pei
    Correspondence
    Corresponding authors at: Department of Ultrasound, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong 510060, China.
    Affiliations
    Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
    Search for articles by this author
  • Jianhua Zhou
    Correspondence
    Corresponding authors at: Department of Ultrasound, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong 510060, China.
    Affiliations
    Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
    Search for articles by this author
  • Author Footnotes
    1 Equal contributors

      Highlights

      • The ACR O-RADS US has a good diagnostic performance in differentiating malignant from benign adnexal lesions.
      • The ACR O-RADS US is applicable to radiologists with different experience even freshman.
      • Explicit sub-classification into two groups among O-RADS 4 lesions showed better stratification of the intermediate risk.

      Abstract

      Objective

      To assess the diagnostic performance and inter-observer agreement of the American College of Radiology (ACR) Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US).

      Methods

      From January 2016 to December 2018 a total of 1054 adnexal lesions in 1035 patients with pathologic results from two hospitals were retrospectively included. Each lesion was assigned to an O-RADS US category according to the criteria. Kappa (κ) statistics were applied to assess inter-observer agreement between a less experienced and an expert radiologist.

      Results

      Of the 1054 adnexal lesions, 750 were benign and 304 were malignant. The malignancy rates of O-RADS 5, O-RADS 4, O-RADS 3, and O-RADS 2 lesions were 89.57%, 34.46%, 1.10%, and 0.45% respectively. Area under the receiver operating characteristic curve was 0.960 (95% CI, 0.947–0.971). The optimal cutoff value for predicting malignancy was >O-RADS 3 with a sensitivity and specificity of 98.7% (95% CI, 0.964–0.996) and 83.2% (95% CI, 0.802–0.858) respectively. When sub-classifying multilocular cysts and smooth solid lesions in O-RADS 4 lesions as O-RADS 4a lesions and the rest cystic lesions with solid components as O-RADS 4b lesions, the malignancy rate were 17.02% and 42.57% respectively, which showed better risk stratification (P < 0.001). The inter-observer agreement between a less-experienced and an expert radiologist of O-RADS categorization was good (κ = 0.714).

      Conclusions

      The ACR O-RADS US provides effective malignancy risk stratification for adnexal lesions with high reliability for radiologists with different experience. Sub-grouping of O-RADS 4 lesions into two groups facilitated better stratification of the intermediate risk.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gynecologic Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yazbek J.
        • Raju S.K.
        • Ben-Nagi J.
        • Holland T.K.
        • Hillaby K.
        • Jurkovic D.
        Effect of quality of gynaecological ultrasonography on management of patients with suspected ovarian cancer: a randomised controlled trial.
        Lancet Oncol. 2008; 9: 124-131
        • Timmerman D.
        • Valentin L.
        • Bourne T.H.
        • Collins W.P.
        • Verrelst H.
        • Vergote I.
        Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) group.
        Ultrasound Obstet. Gynecol. 2000; 16: 500-505
        • Timmerman D.
        • Testa A.C.
        • Bourne T.
        • Ameye L.
        • Jurkovic D.
        • Van Holsbeke C.
        • Paladini D.
        • Van Calster B.
        • Vergote I.
        • Van Huffel S.
        • Valentin L.
        Simple ultrasound-based rules for the diagnosis of ovarian cancer.
        Ultrasound Obstet. Gynecol. 2008; 31: 681-690
        • Van Calster B.
        • Van Hoorde K.
        • Valentin L.
        • Testa A.C.
        • Fischerova D.
        • Van Holsbeke C.
        • Savelli L.
        • Franchi D.
        • Epstein E.
        • Kaijser J.
        • Van Belle V.
        • Czekierdowski A.
        • Guerriero S.
        • Fruscio R.
        • Lanzani C.
        • Scala F.
        • Bourne T.
        • Timmerman D.
        Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study.
        BMJ. 2014; 349: g5920
        • Alcázar J.L.
        • Pascual M.A.
        • Graupera B.
        • Aubá M.
        • Errasti T.
        • Olartecoechea B.
        • Ruiz-Zambrana A.
        • Hereter L.
        • Ajossa S.
        • Guerriero S.
        External validation of IOTA simple descriptors and simple rules for classifying adnexal masses.
        Ultrasound Obstet. Gynecol. 2016; 48: 397-402
        • Timmerman D.
        • Van Calster B.
        • Testa A.
        • Savelli L.
        • Fischerova D.
        • Froyman W.
        • Wynants L.
        • Van Holsbeke C.
        • Epstein E.
        • Franchi D.
        • Kaijser J.
        • Czekierdowski A.
        • Guerriero S.
        • Fruscio R.
        • FPG Leone
        • Rossi A.
        • Landolfo C.
        • Vergote I.
        • Bourne T.
        • et al.
        Predicting the risk of malignancy in adnexal masses based on the simple rules from the international ovarian tumor analysis group.
        Am. J. Obstet. Gynecol. 2016; 214: 424-437
        • Timmerman D.
        • Ameye L.
        • Fischerova D.
        • Epstein E.
        • Melis G.B.
        • Guerriero S.
        • Van Holsbeke C.
        • Savelli L.
        • Fruscio R.
        • Lissoni A.A.
        • Testa A.C.
        • Veldman J.
        • Vergote I.
        • Van Huffel S.
        • Bourne T.
        • Valentin L.
        Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group.
        BMJ. 2010; 341: c6839
        • Abramowicz J.S.
        • Timmerman D.
        Ovarian mass–differentiating benign from malignant: the value of the international ovarian tumor analysis ultrasound rules.
        Am. J. Obstet. Gynecol. 2017; 217: 652-660
        • Ameye L.
        • Valentin L.
        • Testa A.C.
        • Van Holsbeke C.
        • Domali E.
        • Van Huffel S.
        • Vergote I.
        • Bourne T.
        • Timmerman D.
        A scoring system to differentiate malignant from benign masses in specific ultrasound-based subgroups of adnexal tumors.
        Ultrasound Obstet. Gynecol. 2009; 33: 92-101
        • Amor F.
        • Alcázar J.L.
        • Vaccaro H.
        • León M.
        • Iturra A.
        GI-RADS reporting system for ultrasound evaluation of adnexal masses in clinical practice: a prospective multicenter study.
        Ultrasound Obstet. Gynecol. 2011; 38: 450-455
        • Bristow R.E.
        • Smith A.
        • Zhang Z.
        • Chan D.W.
        • Crutcher G.
        • Fung E.T.
        • Munroe D.G.
        Ovarian malignancy risk stratification of the adnexal mass using a multivariate index assay.
        Gynecol. Oncol. 2013; 128: 252-259
        • Biagiotti R.
        • Desii C.
        • Vanzi E.
        • Gacci G.
        Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US.
        Radiology. 1999; 210: 399-403
        • Wynants L.
        • Timmerman D.
        • Verbakel J.Y.
        • Testa A.
        • Savelli L.
        • Fischerova D.
        • Franchi D.
        • Van Holsbeke C.
        • Epstein E.
        • Froyman W.
        • Guerriero S.
        • Rossi A.
        • Fruscio R.
        • Leone F.P.G.
        • Bourne T.
        • Valentin L.
        • Van Calster B.
        Clinical utility of risk models to refer patients with adnexal masses to specialized oncology care: multicenter external validation using decision curve analysis.
        Clin. Cancer Res. 2017; 23: 5082-5090
        • Andreotti R.F.
        • Timmerman D.
        • Benacerraf B.R.
        • Bennett G.L.
        • Bourne T.
        • Brown D.L.
        • Coleman B.G.
        • Frates M.C.
        • Froyman W.
        • Goldstein S.R.
        • Hamper U.M.
        • Horrow M.M.
        • Hernanz-Schulman M.
        • Reinhold C.
        • Strachowski L.M.
        • Glanc P.
        Ovarian-adnexal reporting lexicon for ultrasound: a white paper of the ACR ovarian-adnexal reporting and data system committee.
        J. Am. Coll. Radiol. 2018; 15: 1415-1429
        • Van Holsbeke C.
        • Van Calster B.
        • Testa A.C.
        • Domali E.
        • Lu C.
        • Van Huffel S.
        • Valentin L.
        • Timmerman D.
        Prospective internal validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study.
        Clin. Cancer Res. 2009; 15: 684-691
        • Timmerman D.
        • Testa A.C.
        • Bourne T.
        • Ferrazzi E.
        • Ameye L.
        • Konstantinovic M.L.
        • Van Calster B.
        • Collins W.P.
        • Vergote I.
        • Van Huffel S.
        • Valentin L.
        Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group.
        J. Clin. Oncol. 2005; 23: 8794-8801
        • Testa A.
        • Kaijser J.
        • Wynants L.
        • Fischerova D.
        • Van Holsbeke C.
        • Franchi D.
        • Savelli L.
        • Epstein E.
        • Czekierdowski A.
        • Guerriero S.
        • Fruscio R.
        • Leone F.P.G.
        • Vergote I.
        • Bourne T.
        • Valentin L.
        • Van Calster B.
        • Timmerman D.
        Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study.
        Br. J. Cancer. 2014; 111: 680-688
        • Andreotti R.F.
        • Timmerman D.
        • Strachowski L.M.
        • Froyman W.
        • Benacerraf B.R.
        • Bennett G.L.
        • Bourne T.
        • Brown D.L.
        • Coleman B.G.
        • Frates M.C.
        • Goldstein S.R.
        • Hamper U.M.
        • Horrow M.M.
        • Hernanz-Schulman M.
        • Reinhold C.
        • Rose S.L.
        • Whitcomb B.P.
        • Wolfman W.L.
        • Glanc P.
        O-RADS US risk stratification and management system: a consensus guideline from the ACR ovarian-adnexal reporting and data system committee.
        Radiology. 2020; 294: 168-185
        • Strachowski L.M.
        • Jha P.
        • Chawla T.P.
        • Davis K.M.
        • Dove C.K.
        • Glanc P.
        • Morgan T.A.
        • Andreotti R.F.
        O-RADS for ultrasound: a User’s guide, from the AJR special series on radiology reporting and data systems.
        Am. J. Roentgenol. April 2021; : 1-16
        • Van Calster B.
        • Valentin L.
        • Froyman W.
        • Landolfo C.
        • Ceusters J.
        • Testa A.C.
        • Wynants L.
        • Sladkevicius P.
        • Van Holsbeke C.
        • Domali E.
        • Fruscio R.
        • Epstein E.
        • Franchi D.
        • Kudla M.J.
        • Chiappa V.
        • Alcazar J.L.
        • Leone F.P.G.
        • Buonomo F.
        • Coccia M.E.
        • et al.
        Validation of models to diagnose ovarian cancer in patients managed surgically or conservatively: multicentre cohort study.
        BMJ. 2020; 370: m2614
        • Kaku T.
        • Ogawa S.
        • Kawano Y.
        • Ohishi Y.
        • Kobayashi H.
        • Hirakawa T.
        • Nakano H.
        Histological classification of ovarian cancer.
        in: Medical Electron Microscopy. 2003
        • National Comprehensive Cancer Network
        Ovarian Cancer (Version 1, 2021).
        (Accessed April 9, 2021)
        • Basha M.A.A.
        • Metwally M.I.
        • Gamil S.A.
        • Khater H.M.
        • Aly S.A.
        • El Sammak A.A.
        • Zaitoun M.M.A.
        • Khattab E.M.
        • Azmy T.M.
        • Alayouty N.A.
        • Mohey N.
        • Almassry H.N.
        • Yousef H.Y.
        • Ibrahim S.A.
        • Mohamed E.A.
        • Mohamed A.E.M.
        • Afifi A.H.M.
        • Harb O.A.
        • Algazzar H.Y.
        Comparison of O-RADS, GI-RADS, and IOTA simple rules regarding malignancy rate, validity, and reliability for diagnosis of adnexal masses.
        Eur. Radiol. 2021; 31: 674-684
        • Suh-Burgmann E.
        • Flanagan T.
        • Brasic N.
        Reservations regarding O-RADS recommendations.
        Radiology. 2020; 295: 248
        • Wilson M.P.
        • Katlariwala P.
        • Low G.
        Solid hypoechoic adnexal lesions with acoustic shadowing warrant an MRI recommendation in the O-RADS risk stratification and management system.
        Radiology. April 2020; 200437
        • Valentin L.
        • Hagen B.
        • Tingulstad S.
        • Eik-Nes S.
        Comparison of “pattern recognition” and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation.
        Ultrasound Obstet. Gynecol. 2001; 18: 357-365
        • Meys E.M.J.
        • Kaijser J.
        • Kruitwagen R.F.P.M.
        • Slangen B.F.M.
        • Van Calster B.
        • Aertgeerts B.
        • Verbakel J.Y.
        • Timmerman D.
        • Van Gorp T.
        Subjective assessment versus ultrasound models to diagnose ovarian cancer: a systematic review and meta-analysis.
        Eur. J. Cancer. 2016; 58: 17-29
        • Meys E.M.J.
        • Jeelof L.S.
        • Achten N.M.J.
        • Slangen B.F.M.
        • Lambrechts S.
        • Kruitwagen R.F.P.M.
        • Van Gorp T.
        Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods.
        Ultrasound Obstet. Gynecol. 2017; 49: 784-792
        • Froyman W.
        • Landolfo C.
        • De Cock B.
        • Wynants L.
        • Sladkevicius P.
        • Testa A.C.
        • Van Holsbeke C.
        • Domali E.
        • Fruscio R.
        • Epstein E.
        • dos Santos Bernardo M.J.
        • Franchi D.
        • Kudla M.J.
        • Chiappa V.
        • Alcazar J.L.
        • Leone F.P.G.
        • Buonomo F.
        • Hochberg L.
        • Coccia M.E.
        • et al.
        Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study.
        Lancet Oncol. 2019; 20: 448-458
        • Biggs W.S.
        • Marks S.T.
        Diagnosis and Management of Adnexal Masses.
        Am. Fam. Physician. 2016; 93: 676-681
        • Ware Miller Rachel
        • van Nagell Jr., John Rensselaer
        Evaluation and management of ultrasonographically detected ovarian tumors in asymptomatic women.
        Obstet Gynecol J Am Coll Obstet Gynecol. 2016; 127: 848-858